Skip to main content

Hybrid Scheme for Compressible MHD Turbulence

  • Chapter
  • First Online:
Energy Transfer and Dissipation in Plasma Turbulence

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we describe in detail an efficient, high-resolution and oscillation-free hybrid scheme for shock-turbulence interactions in compressible MHD problems. The hybrid scheme couples compact finite difference scheme with WENO scheme, wherein compact finite difference scheme used in the smooth region ensures the accuracy, while WENO scheme applied in the shock region captures discontinuities robustly. In order to maintain numerical stability and eliminate spurious oscillations, we utilize a pentadiagonal filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balsara DS, Kim J (2004) A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics. Astrophys J 602:1079–1090

    Article  ADS  Google Scholar 

  2. Biskamp D (2003) Magnetohydrodynamic turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  3. Gaitonde DV, Visbal MR (1998) High-order schemes for Navier-Stokes equations: algorithm and implementation into FDL3DI. Technical Report AFRL-VA-WP-TR-1998-3060, US Air Force Research Laboratory, Wright-Patterson AFB

    Google Scholar 

  4. Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice Hall PTR

    Google Scholar 

  5. Hirsch C (2007) Numerical computation of internal and external flows: fundamentals of computational fluid dynamics. Butterworth-Heinemann

    Google Scholar 

  6. Jiang GS, Wu CC (1999) A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J Comput Phys 150:561–594

    Article  ADS  MathSciNet  Google Scholar 

  7. Kawai S (2013) Divergence-free-preserving high-order schemes for magnetohydrodynamics: an artificial magnetic resistivity method. J Comput Phys 251:292–318

    Article  ADS  MathSciNet  Google Scholar 

  8. Kim JW (2010) High-order compact filters with variable cut-off wavenumber and stable boundary treatment. Comput Fluids 39:1168–1182

    Article  Google Scholar 

  9. Lambert JD (1973) Computational methods in ordinary differential equations. Wiley

    Google Scholar 

  10. Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103:16–42

    Article  ADS  MathSciNet  Google Scholar 

  11. Müller WC, Biskamp D (2000) Scaling properties of three-dimensional magnetohydrodynmaic turbulence. Phys Rev Lett 84:475

    Article  ADS  Google Scholar 

  12. Shen Y, Zha G, Huerta MA (2012) E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO scheme. J Comput Phys 231:6233–6247

    Article  ADS  MathSciNet  Google Scholar 

  13. Shu CW, Osher S (1988) Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys 77:439–471

    Article  ADS  MathSciNet  Google Scholar 

  14. Tóth G (2000) The \(\nabla \cdot \mathbf{B}=0\) constraint in shock-capturing magnetohydrodynamics codes. J Comput Phys 161:605–652

    Article  ADS  MathSciNet  Google Scholar 

  15. Van Der Houwen PJ (2012) Construction of integration formulas for initial value problems, vol 19. Elsevier

    Google Scholar 

  16. Wang J, Wang LP, Xiao Z, Shi Y, Chen S (2010) A hybrid numerical simulation of isotropic compressible turbulence. J Comput Phys 229:5257–5279

    Article  ADS  Google Scholar 

  17. Wang J, Yang Y, Shi Y, Xiao Z, He XT, Chen S (2013) Cascade of kinetic energy in three-dimensional compressible turbulence. Phys Rev Lett 110:214–505

    Google Scholar 

  18. Yang Y, Wan M, Shi Y, Yang K, Chen S (2016) A hybrid scheme for compressible magnetohydrodynamic turbulence. J Comput Phys 306:73–91

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y. (2019). Hybrid Scheme for Compressible MHD Turbulence. In: Energy Transfer and Dissipation in Plasma Turbulence . Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-8149-2_3

Download citation

Publish with us

Policies and ethics