Skip to main content

Locally Adaptive Noise Covariance Estimation for Color Images

  • Conference paper
  • First Online:
Book cover Digital TV and Multimedia Communication (IFTC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1009))

  • 893 Accesses

Abstract

Noise estimation is crucial in many image processing tasks such as denoising. Most of the existing noise estimation methods are specially developed for grayscale images. For color images, these methods simply handle each color channel independently, without considering the correlation across channels. Moreover, these methods often assume a globally fixed noise model throughout the entire image, neglecting the adaptiveness to the local structures. In this work, we propose a locally adaptive multivariate Gaussian approach to model the noise in color images, in which both the content-dependence and inter-dependence among color channels are explicitly considered. We design an effective method for estimating the noise covariance matrices. Specifically, by exploiting the image self-similarity property, we could estimate a distinct noise covariance matrix for each local region via a linear shrinkage estimator. Experimental results show that our method can effectively estimate the noise covariance matrices. The usefulness is demonstrated with real color image denoising.

This work was supported in part by the Macau Science and Technology Development Fund under Grant FDCT/022/2017/A1, and in part by the Research Committee, University of Macau, under Grants MYRG2016-00137-FST and MYRG2018-00029-FST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Matlab source code available: https://github.com/csjunxu/MCWNNM_ICCV2017.

References

  1. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, vol. 2. Wiley, New York (1958)

    MATH  Google Scholar 

  2. Bovik, A.C.: Handbook of Image and Video Processing. Communications, Networking and Multimedia. Academic Press, Orlando (2005)

    MATH  Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition, vol. 2, pp. 60–65 (2005)

    Google Scholar 

  4. Chakrabarti, A.: Modeling radiometric uncertainty for vision with tone-mapped color images. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2185–2198 (2014)

    Article  Google Scholar 

  5. Chen, G., Zhu, F., Pheng, A.H.: An efficient statistical method for image noise level estimation. In: Proceedings of IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  6. Choi, I., Kim, S., Brown, M.S., Tai, Y.W.: A learning-based approach to reduce JPEG artifacts in image matting. In: Proceedings of IEEE Conference on Computer Vision, pp. 2880–2887 (2013)

    Google Scholar 

  7. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  8. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space. In: Proceedings of IEEE International Conference on Image Processing (2007)

    Google Scholar 

  9. Dong, L., Zhou, J., Tang, Y.Y.: Noise level estimation for natural images based on scale-invariant kurtosis and piecewise stationarity. IEEE Trans. Image Process. 26(2), 1017–1030 (2017)

    Article  MathSciNet  Google Scholar 

  10. Dong, L., Zhou, J., Tang, Y.Y.: Effective and fast estimation for image sensor noise via constrained weighted least squares. IEEE Trans. Image Process. 27(6), 2715–2730 (2018)

    Article  MathSciNet  Google Scholar 

  11. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  12. Förstner, W., Moonen, B.: A metric for covariance matrices. In: Grafarend, E.W., Krumm, F.W., Schwarze, V.S. (eds.) Geodesy-The Challenge of the 3rd Millennium. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05296-9_31

    Chapter  Google Scholar 

  13. Haff, L.: Empirical Bayes estimation of the multivariate normal covariance matrix. Ann. Stat. 8, 586–597 (1980)

    Article  MathSciNet  Google Scholar 

  14. Healey, G.E., Kondepudy, R.: Radiometric CCD camera calibration and noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 267–276 (1994)

    Article  Google Scholar 

  15. Jiang, H., Tian, Q., Farrell, J., Wandell, B.A.: Learning the image processing pipeline. IEEE Trans. Image Process. 26(10), 5032–5042 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kang, B.J., Park, K.R.: Real-time image restoration for iris recognition systems. IEEE Trans. Syst. Man Cybern. B (Cybern.) 37(6), 1555–1566 (2007)

    Article  Google Scholar 

  17. Kim, S.J., Lin, H.T., Lu, Z., Süsstrunk, S., Lin, S., Brown, M.S.: A new in-camera imaging model for color computer vision and its application. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2289–2302 (2012)

    Article  Google Scholar 

  18. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88(2), 365–411 (2004)

    Article  MathSciNet  Google Scholar 

  19. Leonard, T., Hsu, J.S.: Bayesian inference for a covariance matrix. Ann. Stat. 20(4), 1669–1696 (1992)

    Article  MathSciNet  Google Scholar 

  20. Lian, N.X., Chang, L., Tan, Y.P., Zagorodnov, V.: Adaptive filtering for color filter array demosaicking. IEEE Trans. Image Process. 16(10), 2515–2525 (2007)

    Article  MathSciNet  Google Scholar 

  21. Liu, W., Lin, W.: Additive white Gaussian noise level estimation in SVD domain for images. IEEE Trans. Image Process. 22(3), 872–883 (2013)

    Article  MathSciNet  Google Scholar 

  22. Liu, X., Tanaka, M., Okutomi, M.: Noise level estimation using weak textured patches of a single noisy image. In: Proceedings of IEEE International Conference on Image Processing (2012)

    Google Scholar 

  23. Nam, S., Hwang, Y., Matsushita, Y., Kim, S.: A holistic approach to cross-channel image noise modeling and its application to image denoising. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition (2016)

    Google Scholar 

  24. Pyatykh, S., Hesser, J., Zheng, L.: Image noise level estimation by principal component analysis. IEEE Trans. Image Process. 22(2), 687–699 (2013)

    Article  MathSciNet  Google Scholar 

  25. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (SIGGRAPH) 27(3), 1–5 (2008)

    Article  Google Scholar 

  26. Tang, C., Yang, X., Zhai, G.: Noise estimation of natural images via statistical analysis and noise injection. IEEE Trans. Circuits Sys. Video Technol. 25(8), 1283–1294 (2015)

    Article  Google Scholar 

  27. Wen, Y.W., Ng, M.K., Huang, Y.M.: Efficient total variation minimization methods for color image restoration. IEEE Trans. Image Process. 17(11), 2081–2088 (2008)

    Article  MathSciNet  Google Scholar 

  28. Xu, J., Li, H., Liang, Z., Zhang, D., Zhang, L.: Real-world noisy image denoising: a new benchmark. arXiv preprint arXiv:1804.02603 (2018)

  29. Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising. In: Proceedings of IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  30. Zhang, L., Wu, X.: Color demosaicking via directional linear minimum mean square-error estimation. IEEE Trans. Image Process. 14(12), 2167–2178 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, L., Zhou, J. (2019). Locally Adaptive Noise Covariance Estimation for Color Images. In: Zhai, G., Zhou, J., An, P., Yang, X. (eds) Digital TV and Multimedia Communication. IFTC 2018. Communications in Computer and Information Science, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-13-8138-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8138-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8137-9

  • Online ISBN: 978-981-13-8138-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics