Skip to main content

Enhanced Saliency Prediction via Free Energy Principle

  • Conference paper
  • First Online:
  • 951 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1009))

Abstract

Saliency prediction can be treated as the activity of human brain. Most saliency prediction methods employ features to determine the contrast of an image area relative to its surroundings. However, only few studies have investigated how human brain activities affect saliency prediction. In this paper, we propose an enhanced saliency prediction model via free energy principle. A new AR-RTV model, which combines the relative total variation (RTV) structure extractor with autoregressive (AR) operator, is firstly utilized to decompose an original image into the predictable component and the surprise component. Then, we adopt the local entropy of ‘surprise’ map and the gradient magnitude (GM) map to estimate the component saliency maps-sub-saliency respectively. Finally, inspired by visual error sensitivity, a saliency augment operator is designed to enhance the final saliency combined two sub-saliency maps. Experimental results on two benchmark databases demonstrate the superior performance of the proposed method compared to eleven state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shang, X., Wang, Y., Luo, L., et al.: Perceptual multiview video coding based on foveated just noticeable distortion profile in DCT domain. In: IEEE International Conference on Image Processing, pp. 1914–1917. IEEE (2014)

    Google Scholar 

  2. Han, J., Zhang, D., Cheng, G., et al.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 53(6), 3325–3337 (2015)

    Article  Google Scholar 

  3. Han, J., Chen, C., Shao, L., et al.: Learning computational models of video memorability from fMRI brain imaging. IEEE Trans. Cybern. 45(8), 1692 (2015)

    Article  Google Scholar 

  4. Gu, K., Li, L., Lu, H., et al.: A fast reliable image quality predictor by fusing micro- and macro-structures. IEEE Trans. Ind. Electron. 64(5), 3903–3912 (2017)

    Article  Google Scholar 

  5. Gu, K., Lin, W., Zhai, G., et al.: No-reference quality metric of contrast-distorted images based on information maximization. IEEE Trans. Cybern. 47(12), 4559–4565 (2017)

    Article  Google Scholar 

  6. Gu, K., Wang, S., Yang, H., et al.: Saliency-guided quality assessment of screen content images. IEEE Trans. Multimedia 18(6), 1098–1110 (2016)

    Article  Google Scholar 

  7. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Computer Society (1998)

    Google Scholar 

  8. López-García, F., Fdez-Vidal, X.R., Pardo, X.M., et al.: Scene recognition through visual attention and image features: a comparison between SIFT and SURF approaches. Intech (2011)

    Google Scholar 

  9. Harel, J.: Graph-based visual saliency. Nips 19, 545–552 (2007)

    Google Scholar 

  10. Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vis. 13(4), 11 (2013)

    Article  Google Scholar 

  11. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition 2007, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  12. Achanta, R., Hemami, S., Estrada, F., et al.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition 2009, CVPR 2009, pp. 1597–1604. IEEE (2009)

    Google Scholar 

  13. Hou, X., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 194 (2012)

    Article  Google Scholar 

  14. Li, J., Levine, M.D., An, X., et al.: Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 996–1010 (2013)

    Article  Google Scholar 

  15. Bruce, N., Tsotsos, J.: Attention based on information maximization. J. Vis. 7(9), 950 (2007)

    Article  Google Scholar 

  16. Zhang, L., Tong, M.H., Marks, T.K., et al.: SUN: a Bayesian framework for saliency using natural statistics. J. Vis. 8(7), 32.1 (2008)

    Article  Google Scholar 

  17. Zhao, Q., Koch, C.: Learning visual saliency by combining feature maps in a nonlinear manner using AdaBoost. J. Vis. 12(6), 22 (2012)

    Article  Google Scholar 

  18. Tavakoli, H.R., Laaksonen, J.: Bottom-up fixation prediction using unsupervised hierarchical models. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10116, pp. 287–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54407-6_19

    Chapter  Google Scholar 

  19. Pan, J., Ferrer, C.C., Mcguinness, K., et al.: SalGAN: visual saliency prediction with generative adversarial networks (2017)

    Google Scholar 

  20. Fang, Y., Lin, W., Lau, C.T., et al.: A visual attention model combining top-down and bottom-up mechanisms for salient object detection. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1293–1296. IEEE (2011)

    Google Scholar 

  21. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2012)

    Article  Google Scholar 

  22. Leventhal, A.G.: The Neural Basis of Visual Function: Vision and Visual Dysfunction, vol. 4. CRC Press, Boca Raton (1991)

    Google Scholar 

  23. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127 (2010)

    Article  Google Scholar 

  24. Zhai, G., Wu, X., Yang, X., et al.: A psychovisual quality metric in free-energy principle. IEEE Trans. Image Process. 21(1), 41–52 (2012)

    Article  MathSciNet  Google Scholar 

  25. Gu, K., Zhai, G., Lin, W., et al.: Visual Saliency detection with free energy theory. IEEE Signal Process. Lett. 22(10), 1552–1555 (2015)

    Article  Google Scholar 

  26. Judd, T., Ehinger, K., Durand, F., et al.: Learning to predict where humans look. In: IEEE, International Conference on Computer Vision, pp. 2106–2113. IEEE (2010)

    Google Scholar 

  27. Wu, J., Shi, G., Lin, W., et al.: Just noticeable difference estimation for images with free-energy principle. IEEE Trans. Multimedia 15(7), 1705–1710 (2013)

    Article  Google Scholar 

  28. Gu, K., Zhai, G., Yang, X., et al.: Hybrid no-reference quality metric for singly and multiply distorted images. IEEE Trans. Broadcast. 60(3), 555–567 (2014)

    Article  Google Scholar 

  29. Gu, K., Zhai, G., Yang, X., et al.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimedia 17(1), 50–63 (2014)

    Article  Google Scholar 

  30. Xu, L., Yan, Q., Xia, Y., et al.: Structure extraction from texture via relative total variation. ACM Trans. Graph. 31(6), 1–10 (2012)

    Google Scholar 

  31. Attias, H.: A variational Bayesian framework for graphical models. In: International Conference on Neural Information Processing Systems, pp. 209–215. MIT Press (1999)

    Google Scholar 

  32. Qu, Y.D., Cui, C.S., Chen, S.B., et al.: A fast subpixel edge detection method using Sobel – Zernike moments, operator. Image Vis. Comput. 23(1), 11–17 (2005)

    Article  Google Scholar 

  33. Wandell, B.A.: Foundations of Vision. Sinauer Associates, Sunderland (1995)

    Google Scholar 

  34. Geisler, W.S.: Real-time foveated multiresolution system for low-bandwidth video communication. Proc. SPIE – Int. Soc. Opt. Eng. 3299, 294–305 (1998)

    Google Scholar 

  35. Wang, Z., Bovik, A.C.: Embedded foveation image coding. IEEE Trans. Image Process. 10(10), 1397–1410 (2001)

    Article  Google Scholar 

  36. Bylinskii, Z., Judd, T., Oliva, A., et al.: What do different evaluation metrics tell us about saliency models? IEEE Trans. Pattern Anal. Mach. Intell. 41(3), 740–757 (2019)

    Article  Google Scholar 

  37. Margolin, R., Tal, A.: Saliency for image manipulation. Vis. Comput. 29(5), 381–392 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Natural Science Foundation of China under Grant No. 61671283, 61301113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, P., Wang, Y., Xia, Y., An, P., Zhang, J. (2019). Enhanced Saliency Prediction via Free Energy Principle. In: Zhai, G., Zhou, J., An, P., Yang, X. (eds) Digital TV and Multimedia Communication. IFTC 2018. Communications in Computer and Information Science, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-13-8138-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8138-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8137-9

  • Online ISBN: 978-981-13-8138-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics