Skip to main content

Efficient and Robust Homography Estimation Using Compressed Convolutional Neural Network

  • Conference paper
  • First Online:
Digital TV and Multimedia Communication (IFTC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1009))

Abstract

Homography estimation is one of the important ways to calculate the transformation between images. For most embedded terminal devices, an efficient and robust homography estimation algorithm is extremely necessary. In this paper, we design an innovative compressed convolutional neural network to estimate homographies which work very well. The model size of the network is less than 10 MB, which is small enough to be used on mobile devices. In addition, to improve the estimated accuracy in challenging environment, we present a novel loss function to train our network. Finally, we compare our algorithm with traditional methods and other learning-based methods. Experiments on our compressed network demonstrate that the innovative network achieves better accuracy compared to other learning-based algorithms, and is more robust to illumination changes compared to traditional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mur-Artal, R., Tardos, J.D.: ORB-SLAM: tracking and mapping recognizable features. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  2. Wang, G., Zhai, Z., Xu, B., et al.: A parallel method for aerial image stitching using ORB feature points. IEEE/ACIS. In: International Conference on Computer and Information Science, pp. 769–773. IEEE (2017)

    Google Scholar 

  3. Hsu, Y.F., Chou, C.C., Shih, M.Y.: Moving camera video stabilization using homography consistency, pp. 2761–2764 (2012)

    Google Scholar 

  4. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34

    Chapter  Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  6. Rublee, E., Rabaud, V., Konolige, K., et al.: ORB: an efficient alternative to SIFT or SURF. In: International Conference on Computer Vision, Barcelona, pp. 2564–2571 (2011)

    Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: IEEE International Conference on Robotics and Automation, pp. 15–22. IEEE (2014)

    Google Scholar 

  9. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  10. Evangelidis, G.D., Psarakis, E.Z.: Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1858–1865 (2008)

    Article  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  12. Chatfield, K., Simonyan, K., Vedaldi, A., et al.: Return of the devil in the details: delving deep into convolutional nets. Comput. Sci. 50(1), 815–830 (2014)

    Google Scholar 

  13. Wan, J., Wang, D., Hoi, S.C.H., et al.: Deep learning for content-based image retrieval: a comprehensive study. In: The ACM International Conference, pp. 157–166. ACM (2014)

    Google Scholar 

  14. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_38

    Chapter  Google Scholar 

  15. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. Educ. Inform. 31, 2938–2946 (2015)

    Google Scholar 

  16. Tateno, K., Tombari, F., Laina, I., et al.: CNN-SLAM: real-time dense monocular SLAM with learned depth prediction, pp. 6565–6574 (2017)

    Google Scholar 

  17. Wang, S., Clark, R., Wen, H., et al.: DeepVO: towards end-to-end visual odometry with deep recurrent convolutional neural networks, pp. 2043–2050 (2017)

    Google Scholar 

  18. Detone, D.: Deep image homography estimation. In: RSS Workshop on Limits and Potentials of Deep Learning in Robotics (2016)

    Google Scholar 

  19. Nguyen, T., Chen, S.W., Skandan, S., et al.: Unsupervised deep homography: a fast and robust homography estimation model. IEEE Robot. Autom. Lett. PP(99), 1 (2018)

    Google Scholar 

  20. Howard, A.G., Zhu, M., Chen, B., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017)

    Google Scholar 

  21. Xie, S., Girshick, R., Dollar, P., et al.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5987–5995. IEEE Computer Society (2017)

    Google Scholar 

  22. Zhang, X., Zhou, X., Lin, M., et al.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grants 61571285, and Shanghai Science and Technology Commission under Grant 17DZ2292400 and 18XD1423900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, G., You, Z., An, P., Yu, J., Chen, Y. (2019). Efficient and Robust Homography Estimation Using Compressed Convolutional Neural Network. In: Zhai, G., Zhou, J., An, P., Yang, X. (eds) Digital TV and Multimedia Communication. IFTC 2018. Communications in Computer and Information Science, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-13-8138-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8138-6_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8137-9

  • Online ISBN: 978-981-13-8138-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics