Skip to main content

MAPLE Enables Functional Assessment of Microbiota in Various Environments

  • Chapter
  • First Online:
Marine Metagenomics

Abstract

A main goal of metagenomic analysis is to elucidate comprehensive functions (i.e., the functionome) of entire communities across various environments, but only PCR amplicon analysis of 16S rDNA has been performed in most metagenomic projects so far. One reason for this is that a standard evaluation method for discerning the functional potentials harbored within genomes or metagenomes has not yet been established. To break this deadlock, a new method was developed to infer the potential functionome based on the completion ratio of the individual Kyoto Encyclopedia of Genes and Genomes functional modules. A prototype system of the MAPLE (Metabolic And Physiological potentiaL Evaluator) to automate all processes used in this new method was then launched in December 2013. The MAPLE system was further improved to increase its usability, and the latest version, MAPLE 2.3.1, is now available through a web interface (https://maple.jamstec.go.jp/maple/maple-2.3.1/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arai W, Taniguchi T, Goto S, Moriya Y, Uehara H et al (2018) MAPLE 2.3.0: an improved system for evaluating the functionomes of genomes and metagenomes. Biosci Biotechnol Biochem 82:1515–1517

    CAS  PubMed  Google Scholar 

  • Filippo CD, Ramazzotti M, Fontana R, Cavalieri D (2012) Bioinformatic approaches for functional annotation and pathway inference in metagenomic data. Brief Bioinform 13:696–710

    PubMed  PubMed Central  Google Scholar 

  • Hayatsu M, Tago K, Uchiyama I, Toyoda A, Wang Y, Shimomura Y et al (2017) An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME J 11:1130–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M et al (2008) KEGG for linking genomes to life and environment. Nucleic Acids Res 36:D480–D484

    CAS  PubMed  Google Scholar 

  • Kuo V, Shoemaker WR, Muscarella ME, Lennon JT (2017) Whole-genome sequence of the soil bacterium Micrococcus sp. KBS0714. Genome Announc 5:e00697–e00617

    PubMed  PubMed Central  Google Scholar 

  • Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiome. DNA Res 14:169–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35:e120

    PubMed  PubMed Central  Google Scholar 

  • Mende DR, Sunagawa S, Aeller G, Bork P (2013) Accurate and universal delineation of prokaryotic species. Nat Methods 10:881–884

    CAS  PubMed  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M et al (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386

    CAS  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa A, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    PubMed  PubMed Central  Google Scholar 

  • Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK et al (2015) Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 6:6505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M et al (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pilgrim J, Ander M, Garros C, Baylis M, Hurst GDD, Siozios S (2017) Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ Microbiol 19:4238–4255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker WR, Muscarella ME, Lennon JT (2015) Genome sequence of the soil bacterium Janthinobacterium sp. KBS0711. Genome Announc 3:e00689–e00615

    PubMed  PubMed Central  Google Scholar 

  • Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM (2015) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43:D593–D598

    CAS  PubMed  Google Scholar 

  • Suzuki S, Kakuta M, Ishida T, Akiyama Y (2014) GHOSTX: an improved sequence homology search algorithm using a query suffix array and a database suffix array. PLoS One 9:e103833

    PubMed  PubMed Central  Google Scholar 

  • Suzuki S, Ishii S, Hoshino T, Rietze A, Tenney A, Morrill P et al (2017) Unusual metabolic diversity of hyperalkaliphilic microbial communities associated with subterranean serpentinization at The Cedars. ISME J 11:2584–2598

    PubMed  PubMed Central  Google Scholar 

  • Takami H, Taniguchi T, Moriya Y, Kuwahara T, Kanehisa M, Goto S (2012) Evaluation method for the potential functionome harbored in the genome and metagenome. BMC Genomics 13:699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takami H, Arai W, Takemoto K, Uchiyama I, Taniguchi T (2015) Functional classification of uncultured “Candidatus Caldiarchaeum subterraneum” using the MAPLE system. PLoS One 10:e0132994

    PubMed  PubMed Central  Google Scholar 

  • Takami H, Taniguchi T, Arai W, Takemoto K, Moriya Y, Goto S (2016) An automated system for evaluation of the potential functionome: MAPLE version 2.1.0. DNA Res 23:467–475

    CAS  PubMed Central  Google Scholar 

  • Takami H, Toyoda A, Uchiyama I, Itoh T, Takaki Y, Arai W et al (2017) Complete genome sequence and expression profile of the commercial lytic enzyme producer Lysobacter enzymogenes M497-1. DNA Res 24:169–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    CAS  PubMed  Google Scholar 

  • Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB et al (2007) Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean sampling expedition metagenomes. Environ Microbiol 9:1464–1475

    CAS  PubMed  Google Scholar 

  • Zeng Q, Tian X, Wang L (2017) Genetic adaptation of microbial populations present in high-intensity catfish production systems with therapeutic oxytetracycline treatment. Sci Rep 7:17491

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks Professor S. Goto of the Database Center for Life Science and Professor K. Takemoto of Kyushu Institute of Technology for their great contribution to this work. The author also thanks W. Arai and T. Nakagawa of JAMSTEC, T. Taniguchi of Mitsubishi Research Institute, K. Yoshimura of NEC Ltd., and H. Uehara of Hewlett-Packard Japan Ltd., for their technical assistance. This work was supported in part by KAKENHI Grants-in-Aid for Scientific Research (Nos. 17H00793 and 15KT0039). This work was also supported in part by grants from the Collaborative Research Program of the Institute for Chemical Research, Kyoto University (Nos. #2013-23 and #2014-24), and by a grant from the Cross-ministerial Strategic Innovation Promotion Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideto Takami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takami, H. (2019). MAPLE Enables Functional Assessment of Microbiota in Various Environments. In: Gojobori, T., Wada, T., Kobayashi, T., Mineta, K. (eds) Marine Metagenomics. Springer, Singapore. https://doi.org/10.1007/978-981-13-8134-8_7

Download citation

Publish with us

Policies and ethics