Skip to main content

Distribution and Community Composition of Ammonia-Oxidizing Archaea and Bacteria in Coastal Sediments in Response to Sediment Material Gradients at Sendai Bay, Japan

  • Chapter
  • First Online:
Marine Metagenomics

Abstract

To examine how ammonia-oxidizing organisms in coastal sediments are affected by environmental changes, the distributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were determined along an environmental gradient from the coastal mud to the offshore coarse sand at Sendai Bay, Japan. Sediment samples were collected in December 2011 and July 2012. The abundance of AOA ammonia monooxygenase alpha subunit gene (amoA) was high in the coastal muddy areas and low in the offshore sandy areas during both months. There was a strong positive correlation between AOA-amoA abundance and ammonia content in the sediment. AOB-amoA abundance was remarkably low in the muddy sediments in December. However, the distribution of AOB-amoA was similar to that of AOA-amoA in July. Clone library analysis indicated that the community composition for both types of organisms differed in sandy and muddy sediments and that the diversity was considerably lower in the muddy sediments during both months. These results suggest that the abundance of ammonia-oxidizing organisms was controlled by the ammonia levels in the sediment. However, there are some inhibitive conditions for AOB: presumably, the low organic matter supply to the surface oxic layer during autumn in the muddy sediment in Sendai Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell GCJ, Banks J, Ross DJ, Keane JP, Robert SS, Revill AT, Volkman JK (2011) Effects of estuarine sediment hypoxia on nitrogen fluxes and ammonia oxidizer gene transcription. FEMS Microbiol Ecol 75:111–122

    CAS  PubMed  Google Scholar 

  • Anderson JM (1975) An ignition method for determination of total phosphorus in lake sediments. Water Res 10:329–331

    Google Scholar 

  • Ando Y, Nakagawa T, Takahashi R, Yoshihara K, Tokuyama T (2009) Seasonal changes in abundance of ammonia-oxidizing archaea and ammonia oxidizing bacteria and their nitrification in sand of an eelgrass zone. Microbes Environ 24:21–27

    PubMed  Google Scholar 

  • Baptista JDC, Lunn M, Davenport RJ, Swan DL, Read LF, Brown MR, Morais C, Curtis TP (2014) Agreement between amoA gene-specific quantitative PCR and fluorescence in situ hybridization in the measurement of ammonia-oxidizing bacteria in activated sludge. Appl Environ Microbiol 80:5901–5910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beman JM, Francis JA (2006) Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary. Appl Environ Microbiol 72:7767–7777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beman JM, Bertics VJ, Braunschweiler T, Wilson JM (2012) Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing archaea and bacteria in marine sediment depth profiles from Catalina Island, California. Front Microbiol 3:263. https://doi.org/10.3389/fmicb.2012.00263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouskill NJ, Eveillard D, Chien D, Jayakumar A, Ward BB (2012) Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments. Environ Microbiol 14:714–729

    CAS  PubMed  Google Scholar 

  • Brotas V, Amorim-Ferreira A, Vale C, Catarino F (1990) Oxygen profiles in intertidal sediments of Ria Formosa (S. Portugal). Hydrobiologia 207:123–129

    CAS  Google Scholar 

  • Cao H, Hong Y, Li M, Gu JD (2011) Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea. Antonie Van Leeuwenhoek 100:545–556

    PubMed  PubMed Central  Google Scholar 

  • Christman GD, Cottrell MT, Popp BN, Gier E, Kirchman DL (2011) Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in the coastal Arctic Ocean in summer and winter. App Environ Microbiol 77:2026–2034

    CAS  Google Scholar 

  • Dang H, Zhang X, Sun J, Li T, Zhang Z, Yang G (2008) Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiol 154:2084–2095

    CAS  Google Scholar 

  • Dang H, Li J, Chen R, Wang L, Guo L, Zhang Z, Klotz MG (2010) Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay. China Appl Environ Microbiol 76:4691–4702

    CAS  PubMed  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869

    CAS  PubMed  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. PNAS 102:14683–14688

    CAS  PubMed  Google Scholar 

  • Freitag TE, Chang L, Prosser JI (2006) Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater–marine gradient. Environ Microbiol 8:684–696

    CAS  PubMed  Google Scholar 

  • French E, Kozlowski JA, Mukherjee M, Bullerjahn G, Bollmanna A (2012) Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. App Environ Microbiol 78:5773–5780

    CAS  Google Scholar 

  • García-Robledo E, Corzo A, Papaspyrou S, Jiménez-Arias JL, Villahermosa D (2010) Freeze-lysable inorganic nutrients in intertidal sediments: dependence on microphytobenthos abundance. Mar Ecol Prog Ser 403:155–163

    Google Scholar 

  • Hansen II, Henriksen K, Blackburn TH (1981) Seasonal distribution of nitrifying bacteria and rates of nitrification in coastal marine sediments. Microb Ecol 7:297–304

    CAS  PubMed  Google Scholar 

  • Henriksen K, Kemp WM (1988) Nitrification in estuarine and coastal marine sediment. In: Blackburn TH, Sorensen J (eds) Nitrogen Cycling in Coastal Marine Environments. Wiley, New York, pp 207–249

    Google Scholar 

  • Hoppe HG (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308

    CAS  Google Scholar 

  • Iwai T (2004) The recent occurrence and examination for occurred causes of oxygen depleted water in Sendai Bay. Miyagi Pref Rep Fish Sci 4:1–12. (in Japanese)

    Google Scholar 

  • Jensen MH, Lomstein E, Sorensen J (1990) Benthic NH4 + and NO3 flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark. Mar Ecol Prog Ser 61:87–96

    CAS  Google Scholar 

  • Kakehi S, Ito S, Yagi H, Wagawa T (2012) Estimation of the residence time of fresh and brackish water in Sendai Bay. J JSCE Div B, Hydr Coast Environ Engineer 68:951–955. (in Japanese with English abstract)

    Google Scholar 

  • Kakehi S, Ito S, Kuwata A, Saito H, Tadokoro K (2015) Phytoplankton distribution during the winter convective season in Sendai Bay, Japan. Cont Shelf Res 97:43–53

    Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72

    CAS  Google Scholar 

  • Kan-no H (1966) Bottom environments of the ark shell, Scapharca broughtonii (Schrenck), in Sendai Bay. Bull Tohoku Nat Fish Res Inst 26:55–75. (in Japanese with English abstract)

    Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    PubMed  Google Scholar 

  • Kowalchuk GA, Stephen JR, de Boer W, Prosser JI, Embley TM, Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lage MD, Reed HE, Weihe C, Crain CM, Martiny JBH (2010) Nitrogen and phosphorus enrichment alter the composition of ammonia-oxidizing bacteria in salt marsh sediments. ISME J 4:933–944

    CAS  PubMed  Google Scholar 

  • Li J, Nedwell D, Beddow J, Dumbrell AJ, McKew BA, Thorpe EL, Whitby C (2015) amoA gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria (AOB) not archaea (AOA) dominate N cycling in the Colne estuary, UK. Appl Environ Microbiol 81:159–165

    PubMed  Google Scholar 

  • Magalhães CM, Machado A, Bordalo AA (2009) Temporal variability in the abundance of ammonia oxidizing bacteria vs. archaea in sandy sediments of the Douro River estuary, Portugal. Aquat Microb Ecol 56:13–23

    Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–981

    CAS  PubMed  Google Scholar 

  • McCaig AE, Phillips CJ, Stephen JR, Kowalchuk GA, Harvey SM, Herbert RA, Embley TM, Prosser JI (1999) Nitrogen cycling and community structure of proteobacterial β-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl Environ Microbiol 65:213–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meinhardt KA, Bertagnolli A, Pannu MW, Strand SE, Brown SL, Stahl DA (2015) Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia-oxidizing archaea and bacteria. Environ Microbiol Rep 7:354–363

    CAS  PubMed  Google Scholar 

  • Nunoura T, Oida H, Nakaseama M, Kosaka A, Ohkubo SB, Kikuchi T, Kazama H, Hosoi-Tanabe S, Nakamura K, Kinoshita M, Hirayama H, Inagaki F, Tsunogai U, Ishibashi J, Takai K (2015) Archaeal diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV hydrothermal field in the southern Okinawa Trough. Appl Environ Microbiol 76:1198–1211

    Google Scholar 

  • Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    CAS  PubMed  Google Scholar 

  • Park H–D, Noguera DR (2007) Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations. J Appl Microbiol 102:1401–1417

    CAS  PubMed  Google Scholar 

  • Park B–J, Park S–J, Yoon D–N, Schouten S, Sinninghe Damste JS, Rhee S–K (2010) Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. App Environ Microbiol 76:7575–7587

    CAS  Google Scholar 

  • Pilarczyk JE, Horton BP, Witter RC, Vane CH, Chagué-Goff C, Goff J (2012) Sedimentary and foraminiferal evidence of the 2011 Tōhoku-oki tsunami on the Sendai coastal plain, Japan. Sed Geo 282:78–89

    Google Scholar 

  • Preston CM, Harris A, Ryan JP, Roman B, Marin R, Jensen S (2011) Underwater application of quantitative PCR on an ocean mooring. PLoS One 6:e22522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, Ingalls AE, Moffett JW, Armbrust EV, Stahl DA (2014) Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci U S A 111:12504–12509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabalais N, Turner RE, Díaz RJ, Justić D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66:1528–1537

    Google Scholar 

  • Robidart JC, Preston CM, Paerl RW, Turk KA, Mosier AC, Francis CA, Scholin CA, Zehr JP (2012) Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Microb Ecol 64:955–963

    Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahan E, Muyzer G (2008) Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiol Ecol 64:175–186

    CAS  PubMed  Google Scholar 

  • Sakami T (2011) Distribution of ammonia-oxidizing archaea and bacteria in the surface sediments of Matsushima Bay in relation to environmental variables. Microb Environ 27:61–66

    Google Scholar 

  • Sakami T, Andoh T, Morita T, Yamamoto Y (2012) Phylogenetic diversity of ammonia-oxidizing archaea and bacteria in biofilters of recirculating aquaculture systems. Mar Genomics 7:27–31

    PubMed  Google Scholar 

  • Santoro AE, Francis CA, de Sieyes NR, Boehm AB (2008) Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 10:1068–1079

    CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siswantoa E, Hashima M (2012) A data fusion study on the impacts of the 2011 Japan tsunami on the marine environment of Sendai Bay. Int J Image Data Fusion 3:191–198

    Google Scholar 

  • Smith JM, Casciotti KL, Chavez FP, Francis CA (2014) Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters. ISME J 8:1704–1714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tait K, Kitidis V, Ward BB, Cummings DG, Jones MR, Somerfield PJ, Widdicombe S (2014) Spatio-temporal variability in ammonia oxidation and ammonia-oxidizing bacteria and archaea in coastal sediments of the western English Channel. Mar Ecol Prog Ser 511:41–58

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar K (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    CAS  PubMed  Google Scholar 

  • Thandrup BD, Dalsgaard T (2008) Nitrogen cycling in sediment. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. Wiley, New York, pp 527–568

    Google Scholar 

  • Tolar BB, King GM, Hollibaugh JT (2013) An analysis of Thaumarchaeota populations from the Northern Gulf of Mexico. Front Microbiol/Aquat Microbiol 72:1–36

    Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    CAS  PubMed  Google Scholar 

  • Urakawa H, Kurata S, Fujiwara T, Kuroiwa D, Maki H, Kawabata S, Hiwatari T, Ando H, Kawai T, Watanabe M, Kohata K (2006) Characterization and quantification of ammonia oxidizing bacteria in eutrophic coastal marine sediments using polyphasic molecular approaches and immunofluorescence staining. Environ Microbiol 8:787–803

    CAS  PubMed  Google Scholar 

  • Wankel SD, Mosier AC, Hansel CM, Paytan A, Francis CA (2011) Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough Estuary, California Scott D. Appl Environ Microbiol 77:269–280

    CAS  PubMed  Google Scholar 

  • Ward BB, O’Mullan GD (2002) Worldwide distribution of Nitrosococcus oceani, a marine ammonia-oxidizing -proteobacterium, detected by PCR and sequencing of 16S rRNA and amoA genes. Appl Environ Microbiol 68:4153–4157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GH, Middelburg JJ, Schouten S, Damsté JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci U S A 103:12317–12322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhalnina K, Quadros PD, Camargo FAO, Triplett EW (2012) Drivers of archaeal ammonia-oxidizing communities in soil. Front Microb 3:1–9

    Google Scholar 

Download references

Acknowledgments

The authors thank the crew of the R.V. Wakataka-Maru for their support during the cruise and Dr. Hajime Saito of Fisheries Research Agency for the sediment material analysis. This study was funded by the Fisheries Agency of Japan, the Ministry of Agriculture, Forestry and Fisheries of Japan.

Conflict of Interest The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Sakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakami, T., Kakehi, S. (2019). Distribution and Community Composition of Ammonia-Oxidizing Archaea and Bacteria in Coastal Sediments in Response to Sediment Material Gradients at Sendai Bay, Japan. In: Gojobori, T., Wada, T., Kobayashi, T., Mineta, K. (eds) Marine Metagenomics. Springer, Singapore. https://doi.org/10.1007/978-981-13-8134-8_11

Download citation

Publish with us

Policies and ethics