Skip to main content

Dilute Bismuthides on InP Substrates: From Materials to Devices

  • Chapter
  • First Online:
  • 699 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 285))

Abstract

Dilute bismuthides, achieved by incorporating a small amount of bismuth (Bi) into conventional III–V semiconductors, have drawn extensive attention as a class of novel material for various promising applications ranging from optoelectronics to thermoelectrics due to their interesting properties such as band gap reduction, strong spin–orbit coupling, relatively weak temperature sensitivity, etc. This chapter focuses on the study of dilute bismuthides on InP substrates: InGaBiAs and InPBi. MBE growth conditions, material morphology and properties (especially electrical and optical properties), and the related potential applications will be discussed, as will the band gap narrowing and the band anticrossing (BAC) model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Yoshida, T. Kita, O. Wada, K. Oe, Temperature dependence of \({\rm {GaAs}_{\rm 1-x}}{\rm {Bi}_{\rm x}}\) band gap studied by photoreflectance spectroscopy. Jpn. J. Appl. Phy. 42(2R), 371 (2003)

    Article  CAS  Google Scholar 

  2. G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, Y. Horino, New iii–v semiconductor ingaasbi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phy. 44(9L), L1161 (2005)

    Article  CAS  Google Scholar 

  3. G. Feng, K. Oe, M. Yoshimoto, Bismuth containing III-V quaternary alloy ingaasbi grown by mbe. Phy. Status Solidi A. 203(11), 2670–2673 (2006)

    Article  CAS  Google Scholar 

  4. Y. Zhong, P.B. Dongmo, J.P. Petropoulos, J.M.O. Zide, Effects of molecular beam epitaxy growth conditions on composition and optical properties of \({\rm In}_{{\rm xGa}_{{\rm 1-x}}}{\rm Bi}_{{\rm yAs}_{{\rm 1-y}}}\). Appl. Phy. Lett. 100(11), 112110 (2012)

    Article  Google Scholar 

  5. S. Zhou, M. Qi, L. Ai, S. Wang, A. Xu, Q. Guo, Growth and electrical properties of high-quality ingaasbi thin films using gas source molecular beam epitaxy. Jpn. J. Appl. Phy. 56(3), 035505 (2017)

    Article  Google Scholar 

  6. Y. Zhong, P. Dongmo, J. Zide, Dilute Bismuthides on an InP Platform (Springer, New York, NY, 2013), pp. 89–116

    Google Scholar 

  7. G. Feng, K. Oe, and M. Yoshimoto, in Temperature dependence of bi behavior in mbe growth of ingaas/inp, Journal of Crystal Growth, vol. 301–302, pp. 121–124, 2007. 14th International Conference on Molecular Beam Epitaxy

    Google Scholar 

  8. S. Stanionytė, V. Pačebutas, B. Čechavičius, A. Bičiūnas, A. Geižutis, V. Bukauskas, R. Butkutė, A. Krotkus, Impact of thermal treatments on epitaxial \({\rm Ga}_{{\rm yIn}_{{\rm 1-y}}}{\rm As}_{{{\rm 1-x}}{\rm Bi}_{\rm x}}\) layers luminescent properties. J. Mater. Sci. 53(11), 8339–8346 (2018)

    Article  Google Scholar 

  9. Domains of molecular beam epitaxial growth of ga(in)asbi on gaas and inp substrates, J. Cryst. Growth. 436, 56 – 61 (2016)

    Google Scholar 

  10. L. Nattermann, P. Ludewig, E. Sterzer, K. Volz, Exploiting strain to enhance the bi incorporation in gaas-based iii/v semiconductors using movpe. J. Cryst. Growth 470, 15–19 (2017)

    Article  CAS  Google Scholar 

  11. J.Y. Tsao, B.W. Dodson, S.T. Picraux, D.M. Cornelison, Critical stresses for \({\rm Si}_{{\rm x}}{\rm Ge}_{{\rm 1-x}}\) strained-layer plasticity. Phys. Rev. Lett. 59, 2455–2458 (1987)

    Article  CAS  Google Scholar 

  12. S. Zhou, M. Qi, L. Ai, A. Xu, S. Wang, Effects of buffer layer preparation and bi concentration on ingaasbi epilayers grown by gas source molecular beam epitaxy. Semicond. Sci. Technol. 30(12), 125001 (2015)

    Article  Google Scholar 

  13. A.R. Mohmad, F. Bastiman, C.J. Hunter, R. Richards, S.J. Sweeney, J.S. Ng, J.P.R. David, Effects of rapid thermal annealing on \({\rm GaAs}_{{\rm 1-x}}{\rm Bi}_{\rm x}\) alloys. Appl. Phy. Lett. 101(1), 012106 (2012)

    Article  Google Scholar 

  14. J.P. Petropoulos, Y. Zhong, J.M.O. Zide, Optical and electrical characterization of ingabias for use as a mid-infrared optoelectronic material. Appl. Phy. Lett. 99(3), 031110 (2011)

    Article  Google Scholar 

  15. R. Kudrawiec, J. Kopaczek, J. Misiewicz, J.P. Petropoulos, Y. Zhong, J.M.O. Zide, Contactless electroreflectance study of \(E_0\) and \(E_0 + \Delta _{SO}\) transitions in \({\rm In}_{{0.53}{\rm Ga}_{0.47}}{\rm Bi}_{{\rm xAs}_{{\rm 1-x}}}\) alloys. Appl. Phy. Lett. 99(25), 251906 (2011)

    Google Scholar 

  16. I.P. Marko, Z. Batool, K. Hild, S.R. Jin, N. Hossain, T.J.C. Hosea, J.P. Petropoulos, Y. Zhong, P.B. Dongmo, J.M.O. Zide, S.J. Sweeney, Temperature and bi-concentration dependence of the bandgap and spin-orbit splitting in InGaBiAs/InP semiconductors for mid-infrared applications. Appl. Phy. Lett. 101(22), 221108 (2012)

    Article  Google Scholar 

  17. R. Butkutė, V. Pačebutas, B. Čechavičius, R. Nedzinskas, A. Selskis, A. Arlauskas, A. Krotkus, Photoluminescence at up to 2.4m wavelengths from gainasbi/alinas quantum wells. J. Cryst. Growth 391, 116–120 (2014)

    Article  Google Scholar 

  18. G.M.T. Chai, C.A. Broderick, E.P. O’Reilly, Z. Othaman, S.R. Jin, J.P. Petropoulos, Y. Zhong, P.B. Dongmo, J.M.O. Zide, S.J. Sweeney, T.J.C. Hosea, Experimental and modelling study of InGaBiAs/InP alloys with up to 5.8% Bi, and with \(\Delta _{SO} > E_{g}\). Semicond. Sci. Technol. 30(9), 094015 (2015)

    Google Scholar 

  19. J. Yoshida, T. Kita, O. Wada, K. Oe, Temperature dependence of \({\rm GaAs}_{{\rm 1-x}}{\rm Bi}_{\rm x}\) band gap studied by photoreflectance spectroscopy. Jpn. J. Appl. Phy. 42(2R), 371 (2003)

    Article  CAS  Google Scholar 

  20. G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, T. Tiedje, Bi-induced p-type conductivity in nominally undoped ga(asbi). Appl. Phy. Lett. 100(9), 092109 (2012)

    Article  Google Scholar 

  21. S. Zhou, L. Ai, M. Qi, S. Wang, A. Xu, Q. Guo, Bi-induced highly n-type carbon-doped ingaasbi films grown by molecular beam epitaxy. J. Mater. Sci. 53(5), 3537–3543 (2018)

    Article  CAS  Google Scholar 

  22. P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J.F. Ihlefeld, P.E. Hopkins, J. Zide, Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide ingabias. J. Appl. Phy. 112(9), 093710 (2012)

    Article  Google Scholar 

  23. C.A. Broderick, W. Xiong, S.J. Sweeney, E.P. O’Reilly, J.M. Rorison, Dilute bismide alloys grown on gaas and inp substrates for improved near- and mid-infrared semiconductor lasers. in 2016 18th International Conference on Transparent Optical Networks (ICTON), July 2016, pp. 1–4

    Google Scholar 

  24. M. Gladysiewicz, R. Kudrawiec, Material gain for Bi-containing III-V quantum wells grown on GaAs, InP, and GaSb substrates: Towards longer wavelengths. in 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM), July 2017, pp. 67–68

    Google Scholar 

  25. C.A. Broderick, W. Xiong, S.J. Sweeney, E.P. O’Reilly, J.M. Rorison, Theory and design of \({\rm In}_{{\rm xGa}_{{\rm 1-x}}}{{\rm As}_{{\rm 1-y}}}{\rm Bi}_{\rm y}\) mid-infrared semiconductor lasers: type-i quantum wells for emission beyond 3m on inp substrates. arXiv:1805.05223 [cond-mat.mtrl-sci], May 2018

  26. Y. Gu, Y.G. Zhang, X.Y. Chen, Y.J. Ma, S.P. Xi, B. Du, H. Li, Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP. Appl. Phy. Lett. 108(3), 032102 (2016)

    Article  Google Scholar 

  27. Y. Zhong, P.B. Dongmo, L. Gong, S. Law, B. Chase, D. Wasserman, J.M.O. Zide, Degenerately doped InGaBiAs: Si as a highly conductive and transparent contact material in the infrared range. Opt. Mater. Express 3(8), 1197–1204 (2013)

    Article  Google Scholar 

  28. T.D. Das, Characterization of \({\rm InP}_{{\rm 1-x}}{\rm Bi}_{\rm x}\) Alloy Grown by Liquid Phase Epitaxy, in Physics of Semiconductor Devices, ed. by V.K. Jain, A. Verma (Springer, New York, 2014), pp. 879–880

    Chapter  Google Scholar 

  29. T. Das, The effect of Bi composition on the properties of \({\rm InP}_{{\rm 1-x}}{\rm Bi}_{\rm x}\) grown by liquid phase epitaxy. J. Appl. Phy. 115(17), 173107 (2014)

    Article  Google Scholar 

  30. K. Wang, Y. Gu, H. F. Zhou, L. Y. Zhang, C. Z. Kang, M. J. Wu, W. W. Pan, P. F. Lu, Q. Gong, and S. M. Wang, InPBi Single Crystals Grown by Molecular Beam Epitaxy, Scientific Reports, vol. 4, pp. 5449 EP –, Jun 2014, article

    Google Scholar 

  31. S. Wang, K. Wang, Y. Gu, W. Pan, X. Wu, L. Zhang, Y. Li, and Q. Gong, Novel dilute InPBi for IR emitters. in 2014 16th International Conference on Transparent Optical Networks (ICTON), July 2014, pp. 1–4

    Google Scholar 

  32. X. Wu, X. Chen, W. Pan, P. Wang, L. Zhang, Y. Li, H. Wang, K. Wang, J. Shao, and S. Wang, Anomalous photoluminescence in \({\rm InP}_{{\rm 1-x}}{\rm Bi}_{\rm x}\), Scientific Reports, vol. 6, pp. 27 867 EP, Jun 2016, article

    Google Scholar 

  33. X.Y. Wu, K. Wang, W.W. Pan, P. Wang, Y.Y. Li, Y.X. Song, Y. Gu, L. Yue, H. Xu, Z.P. Zhang, J. Cui, Q. Gong, S.M. Wang, Effect of rapid thermal annealing on \({\rm InP}_{{\rm 1-x}}{\rm Bi}_{\rm x}\) grown by molecular beam epitaxy. Semicond. Sci. Technol. 30(9), 094014 (2015)

    Article  Google Scholar 

  34. L. Zhang, M. Wu, X. Chen, X. Wu, E. Spiecker, Y. Song, W. Pan, Y. Li, L. Yue, J. Shao, S. Wang, Nanoscale distribution of bi atoms in \({\rm InP}_{{\rm 1-x}}{\rm Bi}_{\rm x}\). Scientific Reports 7(1), 12278 (2017)

    Article  Google Scholar 

  35. C.M. Krammel, M. Roy, F.J. Tilley, P.A. Maksym, L.Y. Zhang, P. Wang, K. Wang, Y.Y. Li, S.M. Wang, P.M. Koenraad, Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy. Phys. Rev. Mater. 1, 034606 (2017)

    Article  Google Scholar 

  36. Y. Gu, K. Wang, H. Zhou, Y. Li, C. Cao, L. Zhang, Y. Zhang, Q. Gong, S. Wang, Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy. Nanoscale Res. Lett. 9(1), 24 (2014)

    Article  Google Scholar 

  37. J. Kopaczek, R. Kudrawiec, M. Polak, P. Scharoch, M. Birkett, T. Veal, K. Wang, Y. Gu, Q. Gong, S. Wang, Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in \({\rm InP}_{{\rm 1-x}}{\rm Bi}_{\rm x}\) dilute bismide with x0.034. Appl. Phy. Lett. 105(22), 222104 (2014)

    Google Scholar 

  38. P. Wang, W. Pan, C. Cao, X. Wu, S. Wang, Q. Gong, Influence of doping in InP buffer on photoluminescence behavior of InPBi. Jpn. J. Appl. Phy. 55(11), 115503 (2016)

    Article  Google Scholar 

  39. H. Łukasz Gelczuk, J. Stokowski, L. Kopaczek, Y. Zhang, K. Li, P. Wang, S.Wang Wang, R. Kudrawiec, Bi-induced acceptor level responsible for partial compensation of native free electron density in \({\rm InP}_{{\rm 1-x}}{\rm Bi}_{\rm x}\) dilute bismide alloys. J. Phy. D Appl. Phy. 49(11), 115107 (2016)

    Google Scholar 

  40. P. Wang, W. Pan, K. Wang, X. Wu, L. Yue, Q. Gong, S. Wang, Investigation to the deep center related properties of low temperature grown InPBi with Hall and photoluminescence. AIP Adv. 5(12), 127104 (2015)

    Article  Google Scholar 

  41. X. Chen, X. Wu, L. Yue, L. Zhu, W. Pan, Z. Qi, S. Wang, J. Shao, Negative thermal quenching of below-bandgap photoluminescence in InPBi. Appl. Phy. Lett. 110(5), 051903 (2017)

    Article  Google Scholar 

  42. W. Pan, J.A. Steele, P. Wang, K. Wang, Y. Song, L. Yue, X. Wu, H. Xu, Z. Zhang, S. Xu, P. Lu, L. Wu, Q. Gong, S. Wang, Raman scattering studies of dilute \({\rm InP}_{{\rm 1-x}}{\rm Bi}_{\rm x}\) alloys reveal unusually strong oscillator strength for Bi-induced modes. Semicond. Sci. Technol. 30(9), 094003 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. O. Zide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Wang, Y., Zide, J.M.O. (2019). Dilute Bismuthides on InP Substrates: From Materials to Devices. In: Wang, S., Lu, P. (eds) Bismuth-Containing Alloys and Nanostructures. Springer Series in Materials Science, vol 285. Springer, Singapore. https://doi.org/10.1007/978-981-13-8078-5_7

Download citation

Publish with us

Policies and ethics