Skip to main content

GaSbBi Alloys and Heterostructures: Fabrication and Properties

  • Chapter
  • First Online:
Bismuth-Containing Alloys and Nanostructures

Abstract

Dilute bismuth (Bi) III-V alloys have recently attracted great attention, due to their properties of bandgap reduction and spin–orbit splitting. The incorporation of Bi into antimonide-based III-V semiconductors is very attractive for the development of new optoelectronic devices working in the mid-infrared range (2–5 µm). However, due to its large size, Bi does not readily incorporate into III-V alloys and the epitaxy of III-V dilute bismides is thus very challenging. This chapter presents the most recent developments in the epitaxy and characterization of GaSbBi alloys and heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.N. Abedin et al., Progress of Multicolor Single Detector to Detector Array Development For Remote Sensing. Proc. SPIE 5543, 239 (2004)

    Article  CAS  Google Scholar 

  2. M.J. Ashwin et al., Controlled nitrogen incorporation in GaNSb alloys. AIP Adv. 1, 032159 (2011)

    Article  CAS  Google Scholar 

  3. D.E. Aspnes, Third-derivative modulation spectroscopy with low-field electroreflectance. Surf. Sci. 37, 418 (1973)

    Article  CAS  Google Scholar 

  4. BIsmide And Nitride Components for High temperature Operation—European Project FP7-STREP n°257974—07/2010–06/2013. www.biancho.org

  5. M. Bahriz et al., High temperature operation of far infrared (λ ~ 20 μm) InAs/AlSb quantum cascade lasers with dielectric waveguide. Opt. Exp. 23(2), 1523–1528 (2015)

    Article  CAS  Google Scholar 

  6. N. Baladés et al., Analysis of Bi Distribution in Epitaxial GaAsBi by Aberration-Corrected HAADF-STEM. Nanoscale Res. Lett. 13, 125 (2018)

    Article  CAS  Google Scholar 

  7. F. Bastiman et al., Bi incorporation in GaAs(100)-2 × 1 and 4 × 3 reconstructions investigated by RHEED and STM. J. Cryst. Growth 341, 19 (2012)

    Article  CAS  Google Scholar 

  8. A. Beyer et al., Local Bi ordering in MOVPE grown Ga(As, Bi) investigated by high resolution scanning transmission electron microscopy. Appl. Mater. Today 6, 22–28 (2017)

    Article  Google Scholar 

  9. R. Butkutė et al., Thermal annealing effect on the properties of GaBiAs. Phys. Status Solidi C 9, 1614 (2012)

    Article  CAS  Google Scholar 

  10. C. Gardes et al., 100 nm AlSb/InAs HEMT for ultra-low power consumption, low-noise applications. Sci. J. Art. Num. 136340 (2014)

    Google Scholar 

  11. C.R. Tait, J.M. Millunchick, Kinetics of droplet formation and Bi incorporation in GaSbBi alloys. J. Appl. Phys. 119, 215302 (2016)

    Article  CAS  Google Scholar 

  12. A. Castellano et al., Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si. APL Photonics 2, 061301 (2017)

    Article  CAS  Google Scholar 

  13. L. Cerutti et al., GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength near 1.55 μm. Appl. Phys. Lett. 106, 101102 (2015)

    Article  CAS  Google Scholar 

  14. X.R. Chen et al., Bismuth Effects on electronic levels in GaSb(Bi)/AlGaSb quantum wells probed by infrared photoreflectance. Chin. Phys. Lett. 32, 067301 (2015)

    Article  Google Scholar 

  15. H.K. Choi et al., Double-heterostructure diode lasers emitting at 3 μm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers. Appl. Phys. Lett. 64, 2474 (1994)

    Article  CAS  Google Scholar 

  16. D. Fan et al., MBE grown GaAsBi/GaAs double quantum well separate confinement heterostructures. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 31(3), 181103–181106, (2013)

    Article  CAS  Google Scholar 

  17. D.P. Samajdar et al., Calculation of direct E0 energy gaps for III-V-Bi alloys using quantum dielectric theory, in The Book Physics of Semiconductor Devices (Springer International Publishing, Cham, 2014), pp. 779–781

    Chapter  Google Scholar 

  18. D.P. Samajdar et al., Calculation of valence band structure of GaSb1−xBix using valence band anticrossing model in the dilute bi regime, in Recent Trends in Materials and Devices (Springer International Publishing, 2016), pp. 243–248

    Google Scholar 

  19. S.K. Das et al., Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy. Infrared Phys. Technol. 55(1), 156–160 (2012)

    Article  CAS  Google Scholar 

  20. O. Delorme et al., Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys. J. Cryst. Growth 477, 144–148 (2017)

    Article  CAS  Google Scholar 

  21. O. Delorme et al., GaSbBi/GaSb quantum well laser diodes. Appl. Phys. Lett. 110, 222106 (2017)

    Article  CAS  Google Scholar 

  22. O. Delorme et al., In situ determination of the growth conditions of GaSbBi alloys. J. Cryst. Growth 495, 9–13 (2018)

    Article  CAS  Google Scholar 

  23. A. Duzik et al., Surface structure of bismuth terminated GaAs surfaces grown with molecular beam epitaxy. Surf. Sci. 606, 1203 (2012)

    Article  CAS  Google Scholar 

  24. A. Duzik et al., Surface morphology and Bi incorporation in GaSbBi(As)/GaSb films. J. Cryst. Growth 390, 5–11 (2014)

    Article  CAS  Google Scholar 

  25. E. Tournié, A.N. Baranov, Mid-Infrared lasers: a review, in Advances in Semiconductor Lasers, ed. by J.J. Coleman, A.C. Brice, C. Jagadish. Semiconductors and Semimetals, vol. 86 (Academic Press, 2012), pp. 183–226

    Google Scholar 

  26. E. Luna et al., Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1−xBix/GaAs quantum wells. Nanotechnology 27(32), 325603 (2016)

    Article  CAS  Google Scholar 

  27. E.G. Bithell, W.M. Stobbs, Composition determination in the GaAs/(Al, Ga) As system using contrast in dark-field transmission electron microscope images. Phil. Mag. A 60, 39 (1989)

    Article  CAS  Google Scholar 

  28. F.K. Tittel, R. Lewicki, Tunable Mid-infrared Laser Absorption Spectroscopy (Woodhead Publishing Ltd., Cambridge, 2013)

    Google Scholar 

  29. M. Ferhat, A. Zaoui, Structural and electronic properties of III-V bismuth compounds. Phys. Rev. B 73, 115107 (2006)

    Article  CAS  Google Scholar 

  30. H. Fitouri et al., Photoreflectance and photoluminescence study of localization effects in GaAsBi alloys. Opt. Mater. 42, 67 (2015)

    Article  CAS  Google Scholar 

  31. T. Fuyuki et al., Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength. Appl. Phys. Express 7, 082101 (2014)

    Article  CAS  Google Scholar 

  32. D.Z. Garbuzov et al., 2.7-μm InGaAsSb/AlGaAsSb laser diodes with continuous-wave operation up to −39 °C. Appl. Phys. Lett. 67, 1346 (1995)

    Article  CAS  Google Scholar 

  33. L. Gelczuk et al., Deep-level defects in n-type GaAsBi alloys grown by molecular beam epitaxy at low temperature and their influence on optical properties. Sci. Rep. 7, 2824 (2017)

    Article  CAS  Google Scholar 

  34. F. Glas et al., Determination of the local concentrations of Mn interstitials and antisite defects in GaMnAs. Phys. Rev. Lett. 93, 086107 (2004)

    Article  CAS  Google Scholar 

  35. S.E. Godoy et al., Dynamic infrared imaging for skin cancer screening. Infrared Phys. Technol. 70, 147–152 (2015)

    Article  Google Scholar 

  36. A.A. Gurjarpadhye et al., Infrared imaging tools for diagnostic applications in dermatology. SM J. Clin. Med Imaging 1(1), 1–5 (2015)

    Google Scholar 

  37. H. Makhloufi et al., Molecular beam epitaxy and properties of GaAsBi/GaAs quantum wells grown by molecular beam epitaxy: effect of thermal annealing. Nanoscale. Res. Lett. 9 (2014)

    Article  CAS  Google Scholar 

  38. T. Hosoda et al., Type-I GaSb-based laser diodes operating in 3.1 to 3.3 μm wavelength range. IEEE Phot. Tech. Lett. 22(10), 718–720 (2010)

    Article  CAS  Google Scholar 

  39. I. Sandall et al., Demonstration of InAsBi photoresponse beyond 3.5 μm. Appl. Phys. Lett. 104(17), 171109 (2013)

    Article  CAS  Google Scholar 

  40. I.P. Marko et al., Properties of hybrid MOVPE/MBE grown GaAsBi/GaAs based near-infrared emitting quantum well lasers. Semicond. Sci. Technol. 30, 094008-0910 (2015)

    Article  CAS  Google Scholar 

  41. J. Chen et al., Effect of quantum well compressive strain above 1% on differential gain threshold current density in type-I GaSb-based diode lasers. IEEE J. Quant. Electr. 44(12), 1204–1201 (2008)

    Google Scholar 

  42. J. Kopaczek et al., Photoreflectance spectroscopy of GaInSbBi and AlGaSbBi quaternary alloys. Appl. Phys. Lett. 105(11), 112102 (2014)

    Article  CAS  Google Scholar 

  43. J. Puustinen et al., Variation of lattice constant and cluster formation in GaAsBi. J. Appl. Phys. 114(24), 243504 (2013)

    Article  CAS  Google Scholar 

  44. J.R. Reboul et al., Continuous wave operation above room temperature of GaSb-based laser diodes grown on Si. Appl. Phys. Lett. 99(12), 121113 (2011)

    Article  CAS  Google Scholar 

  45. A. Janotti et al., Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs. Phys. Rev. B 65, 115203 (2002)

    Article  CAS  Google Scholar 

  46. B. Joukoff et al., Growth of InSb1-xBixsingle crystals by Czochralski method. J. Cryst. Growth 12(2), 169–172 (1972)

    Article  CAS  Google Scholar 

  47. J. Kopaczek et al., Optical properties of GaAsBi/GaAs quantum wells: Photoreflectance, photoluminescence and time-resolved photoluminescence study. Semicond. Sci. Technol. 30, 094005 (2015)

    Article  CAS  Google Scholar 

  48. R. Kudrawiec et al., Carrier localization in GaBiAs probed by photomodulated transmittance and photoluminescence. J. Appl. Phys. 106, 023518 (2009)

    Article  CAS  Google Scholar 

  49. R. Kudrawiec et al., Experimental and theoretical studies of band gap alignment in GaAs1-xBix/GaAs quantum wells. J. Appl. Phys. 116, 233508 (2014)

    Article  CAS  Google Scholar 

  50. L. Wang et al., Novel dilute bismide, epitaxy, physical properties and device application. Crystals 7(3), 63 (2017)

    Article  CAS  Google Scholar 

  51. P. Lafaille et al., High temperature operation of short wavelength InAs-based quantum cascade lasers. AIP Adv. 2(2), 02219 (2012)

    Article  CAS  Google Scholar 

  52. H. Lee et al., Room-temperature 2.78 μm AlGaAsSb/InGaAsSb quantum-well lasers. Appl. Phys. Lett. 66, 1942 (1995)

    Article  CAS  Google Scholar 

  53. W. Linhart et al., Indium-incorporation enhancement of photoluminescence properties of Ga(In)SbBi alloys. J. Phys. D Appl. Phys. 50, 375102 (2017)

    Article  CAS  Google Scholar 

  54. C. Liu et al., Quantum spin hall effect in inverted type-II semiconductors. Phys. Rev. Lett. 100, 236601 (2008)

    Article  CAS  Google Scholar 

  55. J. Lu et al., Investigation of MBE-grown InAs1 − xBix alloys and Bi-mediated type-II superlattices by transmission electron microscopy. J. Cryst. Growth 425, 250 (2015)

    Article  CAS  Google Scholar 

  56. J. Lu et al., Evaluation of antimony segregation in InAs/InAs1−xSbx type-II superlattices grown by molecular beam epitaxy. J. Appl. Phys. 119, 095702 (2016)

    Article  CAS  Google Scholar 

  57. E. Luna et al., Indium distribution at the interfaces of (Ga, In)(N, As)/GaAs quantum wells. Appl. Phys. Lett. 92, 141913 (2008)

    Article  CAS  Google Scholar 

  58. E. Luna et al., Interface properties of (Ga, In)(N, As) and (Ga, In)(As, Sb) materials systems grown by molecular beam epitaxy. J. Cryst. Growth 311, 1739 (2009)

    Article  CAS  Google Scholar 

  59. E. Luna et al., Critical role of two-dimensional island-mediated growth on the formation of semiconductor heterointerfaces. Phys. Rev. Lett. 109, 126101 (2012)

    Article  CAS  Google Scholar 

  60. E. Luna et al., Spontaneous formation of nanostructures by surface spinodal decomposition in GaAs1−xBix epilayers. J. Appl. Phys. 117, 185302 (2015)

    Article  CAS  Google Scholar 

  61. E. Luna et al., Morphological and chemical instabilities of nitrogen delta-doped GaAs/(Al, Ga) As quantum wells. Appl. Phys. Lett. 110, 201906 (2017)

    Article  CAS  Google Scholar 

  62. E. Luna et al., Microstructure and interface analysis of emerging Ga (Sb, Bi) epilayers and Ga (Sb, Bi)/GaSb quantum wells for optoelectronic applications. Appl. Phys. Lett. 112, 151905 (2018)

    Article  CAS  Google Scholar 

  63. E. Luna et al., Transmission electron microscopy of Ga(Sb, Bi)/GaSb quantum wells with varying Bi content and quantum well thickness. Semicond. Sci. Technol. 33, 094006 (2018)

    Article  CAS  Google Scholar 

  64. M.K. Rajpalke et al., High Bi content GaSbBi alloys. J. Appl. Phys. 116(4), 043511 (2014)

    Article  CAS  Google Scholar 

  65. M.P. Polak et al., in Theoretical and experimental studies of electronic band structure for GaSb1−xBix in the dilute Bi regime. J. Phys. D: Appl. Phys. 47(35), 355107 (2014)

    Google Scholar 

  66. J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers. J. Cryst. Growth 27, 118 (1974)

    CAS  Google Scholar 

  67. J. Misiewicz, R. Kudrawiec, Contactless electroreflectance spectroscopy of optical transitions in low dimensional semiconductor structures. Opto-Electron. Rev. 20, 101 (2012)

    Article  CAS  Google Scholar 

  68. K. Muraki et al., Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 61, 557 (1992)

    Article  CAS  Google Scholar 

  69. Nguyen-Van et al., Quantum cascade lasers grown on silicon. Sci. Rep. 8, 7206 (2018)

    Article  CAS  Google Scholar 

  70. A.J. Noreika et al., Indium antimonide-bismuth compositions grown by molecular beam epitaxy. J. Appl. Phys. 53(7), 4932–4937 (1982)

    Article  CAS  Google Scholar 

  71. A.G. Norman et al., Atomic ordering and phase separation in MBE GaAs1−xBix. J. Vac. Sci. Technol. B 29, 03C121 (2011)

    Article  CAS  Google Scholar 

  72. K. Oe, Metalorganic vapour phase epitaxial growth of metastable GaAs1−xBix alloy. J. Cryst. Growth 237, 1481–1485 (2002)

    Article  Google Scholar 

  73. R. O’Malley et al., Detection of pedestrians in far-infrared automotive night vision using region-growing and clothing distortion compensation. Infrared Phys. Technol. 53, 439–449 (2010)

    Article  CAS  Google Scholar 

  74. P. Ludewig et al., Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser. Appl. Phys. Lett. 102(24), 242115 (2013)

    Article  CAS  Google Scholar 

  75. P.A Doyle, P.S. Turner “Relativistic Hartree-Fock X-ray and electron scattering factors” Acta Crystallogr. Sect. A 24, 390 (1968)

    Article  CAS  Google Scholar 

  76. P.K. Patil et al., GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique. Nanotechnology 28(10), 105702 (2017)

    Article  CAS  Google Scholar 

  77. Z. Pan et al., Kinetic modeling of N incorporation in GaInNAs growth by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 77, 214 (2000)

    Article  CAS  Google Scholar 

  78. R. Pecharoman-Gallego, Quantum cascade lasers: review, applications and prospective development. Lasers Eng. 24(5–6), 277–314 (2013)

    Google Scholar 

  79. M. Polak et al., First-principles calculations of bismuth induced changes in the band structure of dilute Ga–V–Bi and In–V–Bi alloys: chemical trends versus experimental data. Semicond. Sci. Technol. 30, 094001 (2015)

    Article  CAS  Google Scholar 

  80. M.P.J. Punkkinen et al., Thermodynamics of the pseudobinary GaAs1−xBix (0 ≤ x ≤ 1) alloys studied by different exchange-correlation functionals, special quasi-random structures and Monte Carlo simulations. Comput. Condens. Matter 5, 7 (2015)

    Article  Google Scholar 

  81. R. Butkutė et al., Bismuth quantum dots in annealed GaAsBi/AlAs quantum wells. Nanoscale Res. Lett. 12:436 (2017)

    Google Scholar 

  82. R. Kudrawiec et al., Type I GaSb1-xBix/GaSb quantum wells dedicated for mid infrared laser applications: Photoreflectance studies of band gap alignment. Phys. Rev. Appl. (2018) (submitted (2018)

    Google Scholar 

  83. R.B. Lewis et al., Growth of high Bi concentration GaAs1−xBix by molecular beam epitaxy. Appl. Phys. Lett. 100(5), 082112, (2012)

    Google Scholar 

  84. M.K. Rajpalke et al., Growth and properties of GaSbBi alloys. Appl. Phys. Lett. 103, 142106 (2013)

    Article  CAS  Google Scholar 

  85. M.K. Rajpalke et al., Bi flux-dependent MBE growth of GaSbBi alloys. J. Cryst. Growth 425, 241–244 (2015)

    Article  CAS  Google Scholar 

  86. M. Razeghi et al., Advances in mid-infrared detection and imaging: a key issues review. Rep. Prog. Phys. 77, 082401 (2014)

    Article  CAS  Google Scholar 

  87. D.F. Reyes et al., Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures. Nanoscale Res. Lett. 9, 23 (2014)

    Article  CAS  Google Scholar 

  88. D.R. Rhiger, Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe. J. Electron. Mater. 40, 1815 (2011)

    Article  CAS  Google Scholar 

  89. L.S. Rothman et al., The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110(9–10), 533–572 (2009)

    Article  CAS  Google Scholar 

  90. D.L. Sales et al., Distribution of bismuth atoms in epitaxial GaAsBi. Appl. Phys. Lett. 98, 101902 (2011)

    Article  CAS  Google Scholar 

  91. See www.nextnano.com/index.php for Nextnano GmbH—semiconductor software solutions.

  92. M.K. Shakfa et al., Quantitative study of localization effects and recombination dynamics in GaAsBi/GaAs single quantum wells. J. Appl. Phys. 114, 164306 (2013)

    Article  CAS  Google Scholar 

  93. J.A. Steele et al., Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi. Scientific Reports 6, 28860 (2016)

    Article  CAS  Google Scholar 

  94. Sweeney-13, Bismide-nitride alloys: Promising for efficient light emitting devices in the near- and mid-infrared. J. Appl. Phys. 113, 043110 (2013)

    Article  CAS  Google Scholar 

  95. C.R. Tait et al., Droplet induced compositional inhomogeneities in GaAsBi. Appl. Phys. Lett. 111, 042105 (2017)

    Article  CAS  Google Scholar 

  96. B.-S. Tan et al., The 640 × 512 LWIR type-II superlattice detectors operating at 110 K. Infrared Phys. Techn. 89, 168–173 (2018)

    Article  CAS  Google Scholar 

  97. M.Z. Tidrow et al., Infrared sensors for ballistic missile defense. Infrared Phys. Technol. 42(3–5), 333 (2001)

    Article  Google Scholar 

  98. T. Tiedje et al., Growth and properties of the dilute bismide semiconductor GaAs1−xBix a complementary alloy to the dilute nitrides. Int. J. Nanotechnol. 5, 963 (2008)

    Article  CAS  Google Scholar 

  99. S. Tixier et al., Surfactant enhanced growth of GaNAs and InGaNAs using bismuth. J. Cryst. Growth 251(1–4), 449–454 (2003)

    Article  CAS  Google Scholar 

  100. S. Tixier et al., Molecular beam epitaxy growth of GaAs1-xBix. Appl. Phys. Lett. 82(14), 2245–2247 (2003)

    Article  CAS  Google Scholar 

  101. A. Trampert et al., Correlation between interface structure and light emission at 1.3–1.55 μm of (Ga, In)(N, As) diluted nitride heterostructures on GaAs substrates. J. Vac. Sci. Technol. B 22, 2195 (2004)

    Article  CAS  Google Scholar 

  102. K. Volz et al., Detection of nanometer-sized strain fields in (GaIn)(NAs) alloys by specific dark field transmission electron microscopic imaging. J. Appl. Phys. 97, 014306 (2005)

    Article  CAS  Google Scholar 

  103. I. Vurgaftman et al., Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)

    Article  CAS  Google Scholar 

  104. I. Vurgaftman et al., Interband cascade lasers. J. Phys. D Appl. Phys. 48, 123001 (2015)

    Article  CAS  Google Scholar 

  105. W. Linhart et al., Weak carrier localization in GaSbBi/GaSb QWs studied by photoluminescence and time resolved photoluminescence. Appl. Phys. Lett. (2018) (to be Submitted)

    Google Scholar 

  106. M.C. Wagener et al., Characterization of secondary phases formed during MOVPE growth of InSbBi mixed crystals. J. Cryst. Growth 213(1–2), 51–56 (2000)

    Article  CAS  Google Scholar 

  107. Y. Wei et al., Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 µm. Appl. Phys. Lett. 81, 3675 (2002)

    Article  CAS  Google Scholar 

  108. U. Willer et al., Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt. Lasers Eng. 44(7), 699 (2006)

    Article  Google Scholar 

  109. G. Winnewisser, Submillimeter and infrared astronomy. Infrared Phys. Technol. 35(2/3), 551 (1994)

    Article  CAS  Google Scholar 

  110. C.E.C. Wood et al., Magnesium- and calcium-doping behavior in molecular-beam epitaxial III-V compounds. J. Appl. Phys. 53, 4230 (1982)

    Article  CAS  Google Scholar 

  111. A.W. Wood et al., Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs1−xBix films. Nanotechnology 27, 115704 (2016)

    Article  CAS  Google Scholar 

  112. A.W. Wood et al., Annealing-induced precipitate formation behavior in MOVPE-grown GaAs1−xBix explored by atom probe tomography and HAADF-STEM. Nanotechnology 28, 215704 (2017)

    Article  CAS  Google Scholar 

  113. M. Wu et al., Formation and phase transformation of Bi-containing QD-like clusters in annealed GaAsBi. Nanotechnology 25, 205605 (2014)

    Article  CAS  Google Scholar 

  114. M. Wu et al., Observation of atomic ordering of triple-period-A and-B type in GaAsBi. Appl. Phys. Lett. 105, 041602 (2014)

    Article  CAS  Google Scholar 

  115. M. Wu et al., Detecting lateral composition modulation in dilute Ga(As, Bi) epilayers. Nanotechnology 26, 425701 (2015)

    Article  CAS  Google Scholar 

  116. X. Wu et al., 1.142 μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy. ACS Photonics 4, 1322 (2017)

    Article  CAS  Google Scholar 

  117. Y. Gu et al., Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy. Nanoscale. Res. Lett. 9 (2014)

    Article  CAS  Google Scholar 

  118. Y. Song et al., Growth of GaSb1-xBix by molecular beam epitaxy. J. Vac. Sc. Technol. B 30(2), 02B114, (2012)

    Google Scholar 

  119. M. Yoshimoto et al., Metastable GaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 42(10B), L1235–L1237 (2003)

    Article  CAS  Google Scholar 

  120. L. Yue et al., Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1−xBix thin films. J. Alloys Compd. 742, 780 (2018)

    Article  CAS  Google Scholar 

  121. L. Yue et al., Structural and optical properties of GaSbBi/GaSb quantum wells. Opt. Mat. Express 8, 893–900 (2018)

    Article  CAS  Google Scholar 

  122. Y.C. Zhang et al., Wavelength extension in GaSbBi quantum wells using delta-doping. J. Alloy. Compd. 744, 667–671 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work at the University of Montpellier was partly supported by the French program “Investments for the Future” (EXTRA, ANR-11-EQPX-0016) and the National Research Agency (BIOMAN, ANR-15-CE24-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-B. Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delorme, O. et al. (2019). GaSbBi Alloys and Heterostructures: Fabrication and Properties. In: Wang, S., Lu, P. (eds) Bismuth-Containing Alloys and Nanostructures. Springer Series in Materials Science, vol 285. Springer, Singapore. https://doi.org/10.1007/978-981-13-8078-5_6

Download citation

Publish with us

Policies and ethics