Skip to main content

Epitaxial Growth of Bi2X3 Topological Insulators

  • Chapter
  • First Online:
Bismuth-Containing Alloys and Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 285))

Abstract

Tetradymite-type Bi2X3 (X = Se, Te, Sb) systems have been used as the best thermoelectric materials for decades. Recently, such V-VI compound materials have attracted immense interests because they are identified as topological insulators with salient features associated with the unique topological surface states. In this chapter, we review the use of molecular beam epitaxy technique to achieve single-crystalline Bi2X3 thin films with atomically smooth surface and extremely low-defect density. In particular, we will explore the unique van der Waals epitaxy growth mechanism, providing detailed discussions on the choice of key growth procedures and parameters during the MBE growth. Furthermore, we will introduce advanced growth techniques such as functional doping and structural engineering so that the functionalities can be further multiplied. Finally, we will give an outlook on Bi2X3-based materials system for exploring new physics and device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.G. Analytis, R.D. McDonald, S.C. Riggs, J.H. Chu, G.S. Boebinger, I.R. Fisher, Two-dimensional surface state in the quantum limit of a topological insulator. Nat. Phys. 6, 960–964 (2010). https://doi.org/10.1038/Nphys1861

    Article  CAS  Google Scholar 

  2. N. Bansal, Y.S. Kim, M. Brahlek, E. Edrey, S. Oh, Thickness-independent transport channels in topological insulator Bi2Se3 thin films. Phys. Rev. Lett. 109, 116804 (2012). https://doi.org/10.1103/Physrevlett.109.116804

    Article  Google Scholar 

  3. N. Bansal et al., Epitaxial growth of topological insulator Bi2Se3 film on Si(111) with atomically sharp interface. Thin Solid Films 520, 224–229 (2011). https://doi.org/10.1016/j.tsf.2011.07.033

    Article  CAS  Google Scholar 

  4. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006). https://doi.org/10.1126/science.1133734

    Article  CAS  Google Scholar 

  5. S. Borisova, J. Krumrain, M. Luysberg, G. Mussler, D. Grutzmacher, Mode of growth of ultrathin topological insulator Bi2Te3 films on Si (111) substrates. Cryst. Growth Des. 12, 6098–6103 (2012). https://doi.org/10.1021/cg301236s

    Article  CAS  Google Scholar 

  6. M. Brahlek et al., Topological-metal to band-insulator transition in (Bi1−xInx)2Se3 thin films. Phys. Rev. Lett. 109, 186403 (2012). https://doi.org/10.1103/Physrevlett.109.186403

    Article  Google Scholar 

  7. O. Caha et al., Growth, structure, and electronic properties of epitaxial bismuth telluride topological insulator films on BaF2 (111) substrates. Cryst. Growth Des. 13, 3365–3373 (2013). https://doi.org/10.1021/cg400048g

    Article  CAS  Google Scholar 

  8. F. Capasso, Band-gap engineering—from physics and materials to new semiconductor-devices. Science 235, 172–176 (1987). https://doi.org/10.1126/science.235.4785.172

    Article  CAS  Google Scholar 

  9. C.Z. Chang et al., Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013). https://doi.org/10.1126/science.1234414

    Article  CAS  Google Scholar 

  10. C.Z. Chang et al., Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv. Mater. 25, 1065–1070 (2013). https://doi.org/10.1002/adma.201203493

    Article  CAS  Google Scholar 

  11. C.Z. Chang et al., High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015). https://doi.org/10.1038/NMAT4204

    Article  CAS  Google Scholar 

  12. J.G. Checkelsky, J.T. Ye, Y. Onose, Y. Iwasa, Y. Tokura, Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 8, 729–733 (2012). https://doi.org/10.1038/Nphys2388

    Article  CAS  Google Scholar 

  13. J.G. Checkelsky et al., Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014). https://doi.org/10.1038/Nphys3053

    Article  CAS  Google Scholar 

  14. Y.L. Chen et al., Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009). https://doi.org/10.1126/science.1173034

    Article  CAS  Google Scholar 

  15. Y.L. Chen et al., Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010). https://doi.org/10.1126/science.1189924

    Article  CAS  Google Scholar 

  16. Y.B. Fan et al., Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014). https://doi.org/10.1038/NMAT3973

    Article  CAS  Google Scholar 

  17. Y.T. Fanchiang et al., Strongly exchange-coupled and surface-state-modulated magnetization dynamics in Bi2Se3/yttrium iron garnet heterostructures. Nat. Commun. 9, 223 (2018). https://doi.org/10.1038/s41467-017-02743-2

    Article  CAS  Google Scholar 

  18. C.I. Fornari, P.H.O. Rappl, S.L. Morelhao, E. Abramof, Structural properties of Bi2Te3 topological insulator thin films grown by molecular beam epitaxy on (111) BaF2 substrates. J. Appl. Phys. 119, 165303 (2016). https://doi.org/10.1063/1.4947266

    Article  CAS  Google Scholar 

  19. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385

    Article  CAS  Google Scholar 

  20. H.J. Gossmann, L.C. Feldman, Initial-stages of silicon molecular-beam epitaxy: effects of surface reconstruction. Phys. Rev. B 32, 6–11 (1985). https://doi.org/10.1103/Physrevb.32.6

    Article  CAS  Google Scholar 

  21. S. Grauer et al., Scaling of the quantum anomalous Hall effect as an indicator of axion electrodynamics. Phys. Rev. Lett. 118, 246801 (2017). https://doi.org/10.1103/Physrevlett.118.246801

    Article  CAS  Google Scholar 

  22. X. Guo et al., Single domain Bi2Se3 films grown on InP(111)A by molecular-beam epitaxy. Appl. Phys. Lett. 102, 151604 (2013). https://doi.org/10.1063/1.4802797

    Article  CAS  Google Scholar 

  23. S.E. Harrison, S. Li, Y. Huo, B. Zhou, Y.L. Chen, J.S. Harris, Two-step growth of high quality Bi2Te3 thin films on Al2O3 (0001) by molecular beam epitaxy. Appl. Phys. Lett. 102, 171906 (2013). https://doi.org/10.1063/1.4803717

    Article  CAS  Google Scholar 

  24. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). https://doi.org/10.1103/revmodphys.82.3045

    Article  CAS  Google Scholar 

  25. L. He et al., Evidence of the two surface states of (Bi0.53Sb0.47)2Te3 films grown by van der Waals epitaxy. Sci. Rep. Uk 3, 3406 (2013). https://doi.org/10.1038/srep03406

    Article  Google Scholar 

  26. L. He, X.F. Kou, K.L. Wang, Review of 3D topological insulator thin-film growth by molecular beam epitaxy and potential applications. Phys. Status Solidi R 7, 50–63 (2013). https://doi.org/10.1002/pssr.201307003

    Article  CAS  Google Scholar 

  27. L. He et al., Epitaxial growth of Bi2Se3 topological insulator thin films on Si (111). J. Appl. Phys. 109, 103702 (2011). https://doi.org/10.1063/1.3585673

    Article  CAS  Google Scholar 

  28. L. He et al., Surface-dominated conduction in a 6 nm thick Bi2Se3 thin film. Nano Lett. 12, 1486–1490 (2012). https://doi.org/10.1021/nl204234j

    Article  CAS  Google Scholar 

  29. Q.L. He et al., Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures. Nat. Mater. 16, 94–100 (2016). https://doi.org/10.1038/NMAT4783

    Article  Google Scholar 

  30. Q.L. He et al., Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure. Nat Commun. 5, 5247 (2014). https://doi.org/10.1038/Ncomms5247

    Article  Google Scholar 

  31. Q.L. He et al., Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science 357, 294–299 (2017). https://doi.org/10.1126/science.aag2792

    Article  CAS  Google Scholar 

  32. X.Y. He et al., Highly tunable electron transport in epitaxial topological insulator (Bi1−xSbx)2Te3 thin films. Appl. Phys. Lett. 101, 123111 (2012). https://doi.org/10.1063/1.4754108

    Article  CAS  Google Scholar 

  33. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8, 471–473 (2013). https://doi.org/10.1038/nnano.2013.129

    Article  CAS  Google Scholar 

  34. Y. Jiang et al., Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett. 13, 2851–2856 (2013). https://doi.org/10.1021/nl401186d

    Article  CAS  Google Scholar 

  35. Z.L. Jiang, C.Z. Chang, C. Tang, P. Wei, J.S. Moodera, J. Shi, Independent tuning of electronic properties and induced ferromagnetism in topological insulators with heterostructure approach. Nano Lett. 15, 5835–5840 (2015). https://doi.org/10.1021/acs.nanolett.5b01905

    Article  CAS  Google Scholar 

  36. C.L. Kane, E.J. Mele, Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005). https://doi.org/10.1103/Physrevlett.95.146802

    Article  CAS  Google Scholar 

  37. F. Katmis et al., A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016). https://doi.org/10.1038/nature17635

    Article  CAS  Google Scholar 

  38. N. Koirala et al., Record surface state mobility and quantum Hall effect in topological insulator thin films via interface engineering. Nano Lett. 15, 8245–8249 (2015). https://doi.org/10.1021/acs.nanolett.5b03770

    Article  CAS  Google Scholar 

  39. A. Koma, New epitaxial growth method for modulated structures using Van der Waals interactions. Surf. Sci. 267, 29–33 (1992). https://doi.org/10.1016/0039-6028(92)91081-L

    Article  CAS  Google Scholar 

  40. A. Koma, Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72–76 (1992). https://doi.org/10.1016/0040-6090(92)90872-9

    Article  CAS  Google Scholar 

  41. D.S. Kong et al., Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 5, 4698–4703 (2011). https://doi.org/10.1021/nn200556h

    Article  CAS  Google Scholar 

  42. D.S. Kong et al., Ambipolar field effect in the ternary topological insulator (BixSb1−x)2Te3 by composition tuning. Nat. Nanotechnol. 6, 705–709 (2011). https://doi.org/10.1038/Nnano.2011.172

    Article  CAS  Google Scholar 

  43. M. Konig et al., Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007). https://doi.org/10.1126/science.1148047

    Article  CAS  Google Scholar 

  44. X.F. Kou et al., Scale-invariant quantum anomalous hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014). https://doi.org/10.1103/Physrevlett.113.137201

    Article  Google Scholar 

  45. X.F. Kou et al., Manipulating surface-related ferromagnetism in modulation-doped topological insulators. Nano Lett. 13, 4587–4593 (2013). https://doi.org/10.1021/nl4020638

    Article  CAS  Google Scholar 

  46. X.F. Kou et al., Epitaxial growth of high mobility Bi2Se3 thin films on CdS. Appl. Phys. Lett. 98, 242102 (2011). https://doi.org/10.1063/1.3599540

    Article  CAS  Google Scholar 

  47. X.F. Kou et al., Magnetically doped semiconducting topological insulators. J. Appl. Phys. 112, 063912 (2012). https://doi.org/10.1063/1.4754452

    Article  CAS  Google Scholar 

  48. X.F. Kou et al., Interplay between different magnetisms in Cr-doped topological insulators. ACS Nano 7, 9205–9212 (2013). https://doi.org/10.1021/nn4038145

    Article  CAS  Google Scholar 

  49. X.F. Kou et al., Metal-to-insulator switching in quantum anomalous Hall states. Nat. Commun. 6, 8474 (2015). https://doi.org/10.1038/Ncomms9474

    Article  CAS  Google Scholar 

  50. G. Landolt et al., Spin texture of Bi2Se3 thin films in the quantum tunneling limit. Phys. Rev. Lett. 112, 057601 (2014). https://doi.org/10.1103/Physrevlett.112.057601

    Article  Google Scholar 

  51. M.R. Lang et al., Competing weak localization and weak antilocalization in ultrathin topological insulators. Nano Lett. 13, 48–53 (2012). https://doi.org/10.1021/nl303424n

    Article  CAS  Google Scholar 

  52. M.R. Lang et al., Revelation of topological surface states in Bi2Se3 thin films by in situ Al passivation. ACS Nano 6, 295–302 (2011). https://doi.org/10.1021/nn204239d

    Article  CAS  Google Scholar 

  53. M.R. Lang et al., Proximity induced high-temperature magnetic order in topological insulator-ferrimagnetic insulator heterostructure. Nano Lett. 14, 3459–3465 (2014). https://doi.org/10.1021/nl500973k

    Article  CAS  Google Scholar 

  54. C. Lee, F. Katmis, P. Jarillo-Herrero, J.S. Moodera, N. Gedik, Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet. Nat. Commun. 7, 12014 (2016). https://doi.org/10.1038/Ncomms12014

    Article  CAS  Google Scholar 

  55. H.D. Li et al., The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: an approach for preparing high-quality thin films of a topological insulator. New J. Phys. 12, 103038 (2010). https://doi.org/10.1088/1367-2630/12/10/103038

    Article  CAS  Google Scholar 

  56. M.D. Li et al., Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface. Phys. Rev. Lett. 115, 087201 (2015). https://doi.org/10.1103/Physrevlett.115.087201

    Article  Google Scholar 

  57. R.D. Li, J. Wang, X.L. Qi, S.C. Zhang, Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010). https://doi.org/10.1038/Nphys1534

    Article  CAS  Google Scholar 

  58. Y.Y. Li et al., Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Adv. Mater. 22, 4002–4007 (2010). https://doi.org/10.1002/adma.201000368

    Article  CAS  Google Scholar 

  59. C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells. Phys. Rev. Lett. 101, 146802 (2008). https://doi.org/10.1103/Physrevlett.101.146802

    Article  Google Scholar 

  60. M.H. Liu et al., Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Phys. Rev. Lett. 108, 036805 (2012). https://doi.org/10.1103/Physrevlett.108.036805

    Article  Google Scholar 

  61. W.P. McCray, MBE deserves a place in the history books. Nat. Nanotechnol. 2, 259–261 (2007). https://doi.org/10.1038/nnano.2007.121

    Article  CAS  Google Scholar 

  62. B.S. Meyerson, F.J. Himpsel, K.J. Uram, Bistable conditions for low-temperature silicon epitaxy. Appl. Phys. Lett. 57, 1034–1036 (1990). https://doi.org/10.1063/1.103557

    Article  CAS  Google Scholar 

  63. M. Mogi et al., A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017). https://doi.org/10.1038/NMAT4855

    Article  CAS  Google Scholar 

  64. M. Mogi et al., Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015). https://doi.org/10.1063/1.4935075

    Article  CAS  Google Scholar 

  65. J. Moon, N. Koirala, M. Salehi, W.H. Zhang, W.D. Wu, S. Oh, Solution to the hole-doping problem and tunable quantum Hall effect in Bi2Se3 thin films. Nano Lett. 18, 820–826 (2018). https://doi.org/10.1021/acs.nanolett.7b04033

    Article  CAS  Google Scholar 

  66. A. Mzerd, D. Sayah, J.C. Tedenac, A. Boyer, Optimal crystal-growth conditions of thin-films of Bi2Te3 semiconductors. J. Cryst. Growth 140, 365–369 (1994). https://doi.org/10.1016/0022-0248(94)90312-3

    Article  CAS  Google Scholar 

  67. M.B. Panish, Molecular-beam epitaxy. Science 208, 916–922 (1980). https://doi.org/10.1126/science.208.4446.916

    Article  CAS  Google Scholar 

  68. H.L. Peng et al., Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 9, 225–229 (2009). https://doi.org/10.1038/NMAT2609

    Article  Google Scholar 

  69. X.L. Qi, T.L. Hughes, S.C. Zhang, Topological field theory of time-reversal invariant insulators. Phys. Rev. B. 78, 195424 (2008). https://doi.org/10.1103/Physrevb.78.195424

    Article  Google Scholar 

  70. X.L. Qi, S.C. Zhang, The quantum spin Hall effect and topological insulators. Phys. Today 63, 33–38 (2010). https://doi.org/10.1063/1.3293411

    Article  CAS  Google Scholar 

  71. X.L. Qi, S.C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011). https://doi.org/10.1103/revmodphys.83.1057

    Article  CAS  Google Scholar 

  72. D.X. Qu, Y.S. Hor, J. Xiong, R.J. Cava, N.P. Ong, Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science 329, 821–824 (2010). https://doi.org/10.1126/science.1189792

    Article  CAS  Google Scholar 

  73. M. Salehi, M. Brahlek, N. Koirala, J. Moon, L. Wu, N.P. Armitage, S. Oh, Stability of low-carrier-density topological-insulator Bi2Se3 thin films and effect of capping layers. Appl. Mater. 3, 091101 (2015). https://doi.org/10.1063/1.4931767

    Article  CAS  Google Scholar 

  74. S. Schreyeck et al., Molecular beam epitaxy of high structural quality Bi2Se3 on lattice matched InP(111) substrates. Appl. Phys. Lett. 102, 041914 (2013). https://doi.org/10.1063/1.4789775

    Article  CAS  Google Scholar 

  75. H.H. Sun et al., Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016). https://doi.org/10.1103/Physrevlett.116.257003

    Article  Google Scholar 

  76. C. Tang et al., Above 400-K robust perpendicular ferromagnetic phase in a topological insulator. Sci. Adv. 3, e1700307 (2017). https://doi.org/10.1126/sciadv.1700307

    Article  CAS  Google Scholar 

  77. N.V. Tarakina et al., Suppressing twin formation in Bi2Se3 thin films. Adv. Mater. Interfaces 1, 1400134 (2014). https://doi.org/10.1002/Admi.201400134

    Article  Google Scholar 

  78. A.A. Taskin, Z. Ren, S. Sasaki, K. Segawa, Y. Ando, Observation of dirac holes and electrons in a topological insulator. Phys. Rev. Lett. 107, 016801 (2011). https://doi.org/10.1103/Physrevlett.107.016801

    Article  CAS  Google Scholar 

  79. K. Ueno, H. Abe, K. Saiki, A. Koma, Heteroepitaxy of layered semiconductor gase on a GaAs(111)B surface. Jpn. J. Appl. Phys. 2(30), L1352–L1354 (1991). https://doi.org/10.1143/Jjap.30.L1352

    Article  Google Scholar 

  80. C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010). https://doi.org/10.1002/adma.201000839

    Article  CAS  Google Scholar 

  81. L.A. Walsh, C.L. Hinkle, van der Waals epitaxy: 2D materials and topological insulators. Appl. Mater. Today 9, 504–515 (2017). https://doi.org/10.1016/j.apmt.2017.09.010

    Article  Google Scholar 

  82. E.Y. Wang et al., Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nat. Phys. 9, 620–624 (2013). https://doi.org/10.1038/Nphys2744

    Article  Google Scholar 

  83. J. Wang et al., Interplay between topological insulators and superconductors. Phys. Rev. B 85, 045415 (2012). https://doi.org/10.1103/Physrevb.85.045415

    Article  Google Scholar 

  84. M.X. Wang et al., The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science 336, 52–55 (2012). https://doi.org/10.1126/science.1216466

    Article  CAS  Google Scholar 

  85. Y.L. Wang et al., Scanning tunneling microscopy of interface properties of Bi2Se3 on FeSe. J. Phys. Condens. Matter. 24, 475604 (2012). https://doi.org/10.1088/0953-8984/24/47/475604

    Article  CAS  Google Scholar 

  86. Z.Y. Wang, H.D. Li, X. Guo, W.K. Ho, M.H. Xie, Growth characteristics of topological insulator Bi2Se3 films on different substrates. J. Cryst. Growth 334, 96–102 (2011). https://doi.org/10.1016/j.jcrysgro.2011.08.029

    Article  CAS  Google Scholar 

  87. Y. Xia et al., Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009). https://doi.org/10.1038/Nphys1274

    Article  CAS  Google Scholar 

  88. D. Xiao et al., Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018). https://doi.org/10.1103/Physrevlett.120.056801

    Article  CAS  Google Scholar 

  89. F.X. Xiu et al., Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 6, 216–221 (2011). https://doi.org/10.1038/nnano.2011.19

    Article  CAS  Google Scholar 

  90. J.P. Xu et al., Experimental detection of a majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015). https://doi.org/10.1103/Physrevlett.114.017001

    Article  Google Scholar 

  91. S.Y. Xu et al., Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012). https://doi.org/10.1038/Nphys2351

    Article  CAS  Google Scholar 

  92. K. Yasuda et al., Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 12, 555–559 (2016). https://doi.org/10.1038/Nphys3671

    Article  CAS  Google Scholar 

  93. R. Yoshimi, A. Tsukazaki, K. Kikutake, J.G. Checkelsky, K.S. Takahashi, M. Kawasaki, Y. Tokura, Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor. Nat. Mater. 13, 254–258 (2014). https://doi.org/10.1038/NMAT3885

    Article  Google Scholar 

  94. R. Yoshimi et al., Quantum Hall effect on top and bottom surface states of topological insulator (Bi1−xSbx)2Te3 films. Nat. Commun. 6, 6627 (2015). https://doi.org/10.1038/Ncomms7627

    Article  CAS  Google Scholar 

  95. R. Yoshimi, K. Yasuda, A. Tsukazaki, K.S. Takahashi, N. Nagaosa, M. Kawasaki, Y. Tokura, Quantum Hall states stabilized in semi-magnetic bilayers of topological insulators. Nat. Commun. 6, 8530 (2015). https://doi.org/10.1038/Ncomms9530

    Article  CAS  Google Scholar 

  96. R. Yu, W. Zhang, H.J. Zhang, S.C. Zhang, X. Dai, Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010). https://doi.org/10.1126/science.1187485

    Article  CAS  Google Scholar 

  97. X.X. Yu et al., Separation of top and bottom surface conduction in Bi2Te3 thin films. Nanotechnology. 24, 015705 (2013). https://doi.org/10.1088/0957-4484/24/1/015705

    Article  CAS  Google Scholar 

  98. G.H. Zhang et al., Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl. Phys. Lett. 95, 053114 (2009). https://doi.org/10.1063/1.3200237

    Article  CAS  Google Scholar 

  99. H.J. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009). https://doi.org/10.1038/Nphys1270

    Article  CAS  Google Scholar 

  100. J.M. Zhang, W.G. Zhu, Y. Zhang, D. Xiao, Y.G. Yao, Tailoring magnetic doping in the topological insulator Bi2Se3. Phys. Rev. Lett. 109, 266405 (2012). https://doi.org/10.1103/Physrevlett.109.266405

    Article  Google Scholar 

  101. J.S. Zhang et al., Topology-driven magnetic quantum phase transition in topological insulators. Science 339, 1582–1586 (2013). https://doi.org/10.1126/science.1230905

    Article  CAS  Google Scholar 

  102. J.S. Zhang et al., Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011). https://doi.org/10.1038/Ncomms1588

    Article  Google Scholar 

  103. L. Zhang, R. Hammond, M. Dolev, M. Liu, A. Palevski, A. Kapitulnik, High quality ultrathin Bi2Se3 films on CaF2 and CaF2/Si by molecular beam epitaxy with a radio frequency cracker cell. Appl. Phys. Lett. 101, 153105 (2012). https://doi.org/10.1063/1.4758466

    Article  CAS  Google Scholar 

  104. T. Zhang et al., Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009). https://doi.org/10.1103/Physrevlett.103.266803

    Article  Google Scholar 

  105. Y. Zhang et al., Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 6, 584–588 (2010). https://doi.org/10.1038/Nphys1689

    Article  Google Scholar 

  106. Z.C. Zhang et al., Electrically tuned magnetic order and magnetoresistance in a topological insulator. Nat. Commun. 5, 4915 (2014). https://doi.org/10.1038/Ncomms5915

    Article  CAS  Google Scholar 

  107. Z.H. Zhou, Y.J. Chien, C. Uher, Thin film dilute ferromagnetic semiconductors Sb2−xCrxTe3 with a Curie temperature up to 190 K. Phys. Rev. B. 74, 224418 (2006). https://doi.org/10.1103/Physrevb.74.224418

    Article  Google Scholar 

  108. W.Q. Zou et al., Observation of quantum Hall effect in an ultra-thin (Bi0.53Sb0.47)2Te3 film. Appl. Phys. Lett. 110, 212401 (2017). https://doi.org/10.1063/1.4983684

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the FAME Center, one of the six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. We also gratefully acknowledge the financial support from the National Key R&D Program of China, under contract numbers 2017YFB0405704 and 2017YFA0305400. X.F.K. acknowledges the support from the 1000-Young Talent Program of China and the Shanghai Sailing Program under contract number 17YF1429200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufeng Kou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kou, X., Wang, K.L. (2019). Epitaxial Growth of Bi2X3 Topological Insulators. In: Wang, S., Lu, P. (eds) Bismuth-Containing Alloys and Nanostructures. Springer Series in Materials Science, vol 285. Springer, Singapore. https://doi.org/10.1007/978-981-13-8078-5_14

Download citation

Publish with us

Policies and ethics