Skip to main content

Dilute Bismide Photodetectors

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 285))

Abstract

Dilute bismide III-V semiconductors have many unique properties and have been extensively investigated in recent decades. As the development of material research has progressed, some promising dilute bismide devices have been explored. Incorporation of a small amount of Bi in III-V host materials results in a large band-gap narrowing, which makes dilute bismides potential candidates in long-wavelength photodetectors. In this chapter, we review recent progress on GaAsBi, InAsBi, InSbBi, and InGaAsBi photodetectors, as well as GaAsBi and InGaAsBi THz photoconductive detectors. Some preliminary demonstrations and detector properties have been reported on these dilute bismide photodetectors, while the material quality still needs to be improved and the specific detector properties of dilute bismides still need more understanding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T.P. Humphreys, P.K. Chiang, S.M. Bedair, N.R. Parikh, Metalorganic chemical vapor deposition and characterization of the In-As-Sb-Bi material system for infrared detection. Appl. Phys. Lett. 53, 142 (1988)

    Article  CAS  Google Scholar 

  2. K.T. Huang, C.T. Chiu, R.M. Cohen, G.B. Stringfellow, InAsSbBi alloys grown by organometallic vaporphase epitaxy. J. Appl. Phys. 75, 2857 (1994)

    Article  Google Scholar 

  3. J.J. Lee, J.D. Kim, M. Razeghi, Growth and characterization of InSbBi for long wavelength infrared photodetectors. Appl. Phys. Lett. 70, 3266 (1997)

    Article  CAS  Google Scholar 

  4. M. Oszwaldowski, T. Berus, J. Szade, K. Józwiak, I. Olejniczak, P. Konarski, Structural properties of InSbBi and InSbAsBi thin films prepared by flash-evaporation method. Cryst. Res. Technol. 36, 1155 (2001)

    Article  CAS  Google Scholar 

  5. V.K. Dixit, K.S. Keerthi, H.L. Bhat, P. Bera, M.S. Hegde, Structural and compositional analysis of InBixAsySb(1−x−y) films grown on GaAs(001) substrates by liquid phase epitaxy. Appl. Surf. Sci. 220, 321 (2003)

    Article  CAS  Google Scholar 

  6. Y.X. Song, S.M. Wang, S.I. Roy, P.X. Shi, A. Hallen, Z.H. Lai, Molecular beam epitaxy growth of InSb1−xBix thin films. J. Cryst. Growth 378, 323 (2013)

    Article  CAS  Google Scholar 

  7. M.K. Rajpalke, W.M. Linhart, K.M. Yu, M. Birkett, J. Alaria, J.J. Bomphrey, S. Sallis, L.F.J. Piper, T.S. Jones, M.J. Ashwin, T.D. Veal, Bi-induced band gap reduction in epitaxial InSbBi alloys. Appl. Phys. Lett. 105, 212101 (2014)

    Article  Google Scholar 

  8. J.J. Lee, J.D. Kim, M. Razeghi, Long-wavelength infrared photodetectors based on InSbBi grown on GaAs substrates. Appl. Phys. Lett. 71, 2298 (1998)

    Article  Google Scholar 

  9. J.J. Lee, J.D. Kim, M. Razeghi, Room temperature operation of 8–12 μm InSbBi infrared photodetectors on GaAs substrates. Appl. Phys. Lett. 73, 602 (1998)

    Article  CAS  Google Scholar 

  10. R.B. Lewis, M. Masnadi-Shirazi, T. Tiedje, Growth of high Bi concentration GaAs1−xBix by molecular beam epitaxy. Appl. Phys. Lett. 101, 082112 (2012)

    Article  Google Scholar 

  11. S. Francoeur, M.J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, T. Tiedje: Band gap of GaAs1−xBix, 0 < x < 3.6%. Appl. Phys. Lett. 82, 3874 (2013)

    Google Scholar 

  12. N. Hossain, I.P. Marko, S.R. Jin, K. Hild, S.J. Sweeney, R.B. Lewis, D.A. Beaton, T. Tiedje, Recombination mechanisms and band alignment of GaAs1−xBix/GaAs light emitting diodes. Appl. Phys. Lett. 100, 051105 (2012)

    Article  Google Scholar 

  13. P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I.P. Marko, S.R. Jin, K. Hild, S. Chatterjee, W. Stolz, S.J. Sweeney, K. Volz, Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser. Appl. Phys. Lett. 102, 242115 (2013)

    Article  Google Scholar 

  14. C.J. Hunter, F. Bastiman, A.R. Mohmad, R. Richards, J.S. Ng, S.J. Sweeney, J.P.R. David, Absorption characteristics of GaAs1−xBix/GaAs diodes in the near-infrared. IEEE Photon. Technol. Lett. 24, 2191 (2012)

    Article  CAS  Google Scholar 

  15. Z. Zhou, D.F. Mendes, R.D. Richards, F. Bastiman, J.P.R. David, Absorption properties of GaAsBi based p-i-n heterojunction diodes. Semicond. Sci. Technol. 30, 094004 (2015)

    Article  Google Scholar 

  16. T.B.O. Rockett, R.D. Richards, Y. Gu, F. Harun, Y. Liu, Z. Zhou, J.P.R. David, Influence of growth conditions on the structural and optoelectronic quality of GaAsBi. J. Cryst. Growth 455, 139 (2017)

    Article  Google Scholar 

  17. I.C. Sandall, B. White, R. Richards, D. Mendes, J.P.R. David, C.H. Tan, Demonstration of InAsBi photoresponse beyond 3.5 μm. Appl. Phys. Lett. 104, 171109 (2014)

    Article  Google Scholar 

  18. G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, Y. Horino, New III-V semiconductor InGaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 44, L1161 (2005)

    Article  CAS  Google Scholar 

  19. Y. Zhong, P.B. Dongmo, J.P. Petropoulos, J.M.O. Zide, Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y. Appl. Phys. Lett. 100, 112110 (2012)

    Article  Google Scholar 

  20. R. Kudrawiec, J. Kopaczek, J. Misiewicz, W. Walukiewicz, J.P. Petropoulos, Y. Zhong, P.B. Dongmo, J.M.O. Zide, Temperature dependence of E0 + ΔSO transitions in In0.53Ga0.47BixAs1−x alloys studied by photoreflectance. J. Appl. Phys. 112, 113508 (2012)

    Google Scholar 

  21. I.P. Marko, Z. Batool, K. Hild, S.R. Jin, N. Hossain, T.J.C. Hosea, J.P. Petropoulos, Y. Zhong, P.B. Dongmo, J.M.O. Zide, S.J. Sweeney, Temperature and Bi-concentration dependence of the bandgap and spin-orbit splitting in InGaAsBi/InP semiconductors for mid-infrared applications. Appl. Phys. Lett. 101, 221108 (2012)

    Article  Google Scholar 

  22. X.Y. Chen, Y. Gu, Y.G. Zhang, S.P. Xi, B. Du, Y.J. Ma, W.Y. Ji, Y.H. Shi, Characteristics of InGaAsBi with various lattice mismatches on InP substrate. AIP Adv. 6, 075215 (2016)

    Article  Google Scholar 

  23. Y. Gu, Y.G. Zhang, X.Y. Chen, Y.J. Ma, S.P. Xi, B. Du, H. Li, Nearly lattice-latched short-wave infrared InGaAsBi detectors on InP. Appl. Phys. Lett. 108, 032102 (2016)

    Article  Google Scholar 

  24. B. Du, Y. Gu, Y.G. Zhang, X.Y. Chen, Y.J. Ma, Y.H. Shi, J. Zhang, Wavelength extended InGaAsBi detectors with temperature-insensitive response wavelength. Chin. Phys. Lett. 35, 078501 (2018)

    Article  Google Scholar 

  25. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, Y. Kadoya, Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation. Appl. Phys. Lett. 90, 101119 (2007)

    Article  Google Scholar 

  26. J. Sigmund, C. Sydlo, H.L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, M. Koch, Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas. Appl. Phys. Lett. 87, 252103 (2005)

    Article  Google Scholar 

  27. J. Mangeney, T. Laurent, M. Martin, J.C. Harmand, L. Travers, O. Mauguin, Picosecond carrier lifetimes in dilute GaInNAs grown on InP substrate. Appl. Phys. Lett. 99, 141902 (2011)

    Article  Google Scholar 

  28. A. Arlauskas, P. Svidovsky, K. Bertulis, R. Adomavičius, A. Krotkus, GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths. Appl. Phys. Express 5, 022601 (2012)

    Article  Google Scholar 

  29. V. Pačebutas, A. Urbanowicz, P. Cicėnas, S. Stanionytė, A. Bičiūnas, I. Nevinskas, A. Krotkus, Growth and characterization of quaternary (GaIn)(AsBi) layers for optoelectronic terahertz detector applications. Semicond. Sci. Technol. 30, 094012 (2015)

    Article  Google Scholar 

  30. A.R. Mohmad, F. Bastiman, C.J. Hunter, R.D. Richards, S.J. Sweeney, J.S. Ng, J.P.R. David, B.Y. Majlis, Localization effects and band gap of GaAsBi alloys. Phys. Status Solidi B 251, 1276 (2014)

    Article  CAS  Google Scholar 

  31. J.C. Woolley, M.B. Thomas, A.G. Thompson, Optical energy gap variation in GaxIn1−x As alloys. Can. J. Phys. 46, 157 (1968)

    Article  CAS  Google Scholar 

  32. T. Thomas, A. Mellor, N.P. Hylton, M. Führer, D. Alonso-Álvarez, A. Braun, N.J. Ekins-Daukes, J.P.R. David, S.J. Sweeney, Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell. Semicond. Sci. Technol. 30, 094010 (2015)

    Article  Google Scholar 

  33. K. Volz, J. Koch, B. Kunert, W. Stolz, Doping behaviour of Si, Te, Zn and Mg in lattice-matched (GaIn)(NAs)/GaAs bulk films. J. Cryst. Growth 248, 451 (2003)

    Article  CAS  Google Scholar 

  34. R.N. Kini, L. Bhusal, A.J. Ptak, R. France, A. Mascarenhas, Electron Hall mobility in GaAsBi. J. Appl. Phys. 106, 043705 (2009)

    Article  Google Scholar 

  35. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, NJ, USA) (2006)

    Book  Google Scholar 

  36. S.P. Svensson, H. Hier, W.L. Sarney, D. Donetsky, D. Wang, G. Belenky, Molecular beam epitaxy control and photoluminescence properties of InAsBi. J. Vac. Sci. Technol., B 30, 02B109 (2012)

    Article  Google Scholar 

  37. A. Assali, M. Bouslama, A.H. Reshak, L. Chaabane, Highly desirable semiconducting materials for mid-IR optoelectronics: dilute bismide InAs1−xBix alloys. Mater. Res. Bull. 95, 588 (2017)

    Article  CAS  Google Scholar 

  38. J.B. Varesi, R.E. Bornfreund, A.C. Childs, W.A. Radford, K.D. Maranowski, J.M. Peterson, S.M. Johnson, L.M. Giegerich, T.J. Lyon, J.E. Jensen, Fabrication of high-performance large-format MWIR focal plane arrays from MBE-grown HgCdTe on 4’’ silicon substrates. J. Electron. Mater. 30, 566 (2001)

    Article  CAS  Google Scholar 

  39. C. Cervera, J.B. Rodriguez, R. Chaghi, H. Aϊt-Kaci, P. Christol, Characterization of midwave infrared InAs/GaSb superlattice photodiode. J. Appl. Phys. 106, 024501 (2009)

    Article  Google Scholar 

  40. J.P. Petropoulos, Y. Zhong, J.M.O. Zide, Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material. Appl. Phys. Lett. 99, 031110 (2011)

    Article  Google Scholar 

  41. J. Devenson, V. Pačebutas, R. Butkutė, A. Baranov, A. Krotkus, Structure and optical properties of InGaAsBi with up to 7% bismuth. Appl. Phys. Express 5, 015503 (2012)

    Article  Google Scholar 

  42. P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J.F. Ihlefeld, P.E. Hopkins, J. Zide, Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs. J. Appl. Phys. 112, 093710 (2012)

    Article  Google Scholar 

  43. R. Butkutė, V. Pačebutas, C. Čechavičius, R. Nedzinskas, A. Selskis, A. Arlauskas, A. Krotkus: Photoluminescence at up to 2.4 μm wavelengths from GaInAsBi/AlInAs quantum wells. J. Cryst. Growth. 391, 116 (2012)

    Article  Google Scholar 

  44. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, M. Schell, All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths. Opt. Expr. 16, 9565 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. C. H. Tan and Mr. Thomas Rockett from The University of Sheffield for beneficial discussion. The authors also would like to acknowledge the National Key Research and Development Program of China (Nos. 2017YFB0405300 and 2016YFB0402400), the National Natural Science Foundation of China (Nos. 61775228, 61675225, 61605232), and the Shanghai Rising-Star Program (No. 17QA1404900) for financial supports. The work of RDR was supported by the Royal Academy of Engineering under the Research Fellowships scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gu, Y., Richards, R.D., David, J.P.R., Zhang, Y. (2019). Dilute Bismide Photodetectors. In: Wang, S., Lu, P. (eds) Bismuth-Containing Alloys and Nanostructures. Springer Series in Materials Science, vol 285. Springer, Singapore. https://doi.org/10.1007/978-981-13-8078-5_13

Download citation

Publish with us

Policies and ethics