Skip to main content

Structural Properties of Bi Containing InP Films Explored by Cross-Sectional Scanning

  • Chapter
  • First Online:
Bismuth-Containing Alloys and Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 285))

  • 681 Accesses

Abstract

The structural properties of highly mismatched III-V semiconductors with small amounts of Bi are still not well understood at the atomic level. In this chapter, the potential of cross-sectional scanning tunneling microscopy (X-STM) to address these questions is reviewed. Special attention is paid to the X-STM contrast of isovalent impurities in the III-V system, which is discussed on the basis of theoretical STM images of the (110) surface using density functional theory (DFT) calculations. By comparing high-resolution X-STM images with complementary DFT calculations, Bi atoms down to the third monolayer below the InP (110) surface are identified. With this information, the Short-range ordering of Bi is studied, which reveals a strong tendency toward Bi pairing and clustering. In addition, the occurrence of Bi surface segregation at the interfaces of an InP/InP\(_{1-x}\)Bi\(_{x}\)/InP quantum well with a Bi concentration of \(2.4~\%\) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Zhang, A. Mascarenhas, L.W. Wang, Similar and dissimilar aspects of III-V semiconductors containing Bi versus N. Phys. Rev. B 71, 155201 (2005)

    Google Scholar 

  2. Z. Batool et al., The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing. J. Appl. Phys. 111, 113108 (2012)

    Article  Google Scholar 

  3. X. Chen et al, Effects of Bi on band gap bowing in \({\rm InP}_{1-x}{\rm Bi}_x\) alloys. Opt. Mater. Express 8, 1184 (2018)

    Article  CAS  Google Scholar 

  4. C.A. Broderick, M. Usman, E.P. O’Reilly. Theory of the electronic structure of dilute bismide alloys: tight-binding and k\(\cdot \)p models. in Bismuth-Containing Compounds. Ed. by H. Li, Z.M. Wang (Springer, New York, 2013), p. 55. ISBN: 978-1-4614-8121-8

    Google Scholar 

  5. K. Wang et al., InPBi single crystals grown by molecular beam epitaxy. Sci. Rep. 4, 5449 (2014)

    Google Scholar 

  6. K. Alberi et al., Valence-band anticrossing in mismatched III-V semiconductor alloys. Phys. Rev. B. 75, 045203 (2007)

    Google Scholar 

  7. C.M. Krammel et al., Incorporation of Bi atoms in InP studied at the atomic scale by cross-sectional scanning tunneling microscopy. Phys. Rev. Mater. 1, 034606 (2017)

    Google Scholar 

  8. S. Francoeur et al., Band gap of \({\rm GaAs}_{1-x}{\rm Bi}_x, 0 < x <\) 3:6% Lett. 82, 3874 (2003)

    Google Scholar 

  9. S. Tixier et al., Molecular beam epitaxy growth of \({\rm GaAs}_{1-x}{\rm Bi}_x\). Appl. Phys. Lett. 82, 2245 (2003)

    Article  CAS  Google Scholar 

  10. D.L. Sales et al., Distribution of bismuth atoms in epitaxial GaAsBi. Appl. Phys. Lett. 98, 101902 (2011)

    Article  Google Scholar 

  11. G. Ciatto et al., Spatial correlation between Bi atoms in dilute \({\rm GaAs}_{1-x}{\rm Bi}_x\): from random distribution to Bi pairing and clustering. Phys. Rev. B. 78, 035325 (2008)

    Google Scholar 

  12. C.M. Krammel., Atomic scale investigation of isovalent impurities and nanostructures in III-V semiconductors. PhD thesis. (2018)

    Google Scholar 

  13. F.J. Tilley et al., Scanning tunneling microscopy contrast of isovalent impurities on the GaAs (110) surface explained with a geometrical model. Phys. Rev. B. 93, 035313 (2016)

    Google Scholar 

  14. R.M. Feenstra, A.P. Fein, Scanning tunneling microscopy of cleaved semiconductor surfaces. IBM J. Res. Develop. 30, 466 (1986)

    Article  CAS  Google Scholar 

  15. J.K. Garleff, A.P. Wijnheijmer, P.M. Koenraad, Challenges in crosssectional scanning tunneling microscopy on semiconductors. Semicond. Sci. Technol. 26.6, 064001 (2011)

    Article  Google Scholar 

  16. A. Mikkelsen, E. Lundgren, Cross-sectional scanning tunneling microscopy studies of novel IIIV semiconductor structures. Prog. in Surf. Sci. 80.1, 1 (2005)

    Article  CAS  Google Scholar 

  17. E.T. Yu, Cross-sectional scanning tunneling microscopy. Chem. Rev. 97, 1017 (1997)

    Article  CAS  Google Scholar 

  18. R.S. Goldman, nanoprobing of semiconductor heterointerfaces: quantum dots, alloys and diffusion. J. Phys. D: Appl. Phys. 37, R163 (2004)

    Article  CAS  Google Scholar 

  19. J.K. Garleff, A.P. Wijnheijmer, P.M. Koenraad, Challenges in crosssectional scanning tunneling microscopy on semiconductors. Semicond. Sci. Technol. 26, 064001 (2011)

    Article  Google Scholar 

  20. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, 1994), p. 109. ISBN: 9780521428477

    Google Scholar 

  21. C.J. Chen. Introduction to Scanning Tunneling Microscopy. Oxford Series in Optical and Imaging Sciences (Oxford University Press, 1993). ISBN: 9780198023562

    Google Scholar 

  22. J.A. Stroscio, W.J. Kaiser, Scanning Tunneling Microscopy (Elsevier Science, Methods of Experimental Physics, 1993). ISBN 9780080860152

    Google Scholar 

  23. H. Ye et al., Relaxation models of the (110) zinc-blende III-V semiconductor surfaces: density functional study. Phys. Rev. B 78, 193308 (2008)

    Google Scholar 

  24. J.R. Chelikowsky, M.L. Cohen, Self-consistent pseudopotential calculation for the relaxed (110) surface of GaAs. Phys. Rev. B 20, 4150 (1979)

    Google Scholar 

  25. Ph. Ebert et al., Contribution of surface resonances to scanning tunneling microscopy images: (110) surfaces of III-V semiconductors. Phys. Rev. Lett. 77, 2997 (1996)

    Article  CAS  Google Scholar 

  26. B. Engels et al., Comparison between ab initio theory and scanning tunneling microscopy for (110) surfaces of III-V semiconductors. Phys. Rev. B 58, 7799 (1998)

    Google Scholar 

  27. R.M. Feenstra et al., Atom-selective imaging of the GaAs(110) surface. Phys. Rev. Lett. 58, 1192 (1987)

    Article  CAS  Google Scholar 

  28. H.A. McKay et al., Distribution of nitrogen atoms in dilute GaAsN and InGaAsN alloys studied by scanning tunneling microscopy. J. Vac. Sci. & Technol. B 19, 1644 (2001)

    Google Scholar 

  29. A.Y. Lew et al. Characterization of arsenide/phosphide heterostructure interfaces grown by gassource molecular beam epitaxy. Appl. Phys. Lett. 67, 932 (1995)

    Article  CAS  Google Scholar 

  30. R. Timm et al., Contrast mechanisms in cross-sectional scanning tunneling microscopy of GaSb/GaAs type-II nanostructures. J. Appl. Phys. 105, 093718 (2009)

    Article  Google Scholar 

  31. H.W.M. Salemink, M.B. Johnson, O. Albrektsen, Crosssectional scanning tunneling microscopy on heterostructures: atomic resolution, composition fluctuations and doping. J. Vac. Sci. & Technol. B 12, 362 (1994)

    Google Scholar 

  32. A. Mikkelsen, E. Lundgren, Cross-sectional scanning tunneling microscopy studies of novel IIIV semiconductor structures. Prog. in Surf. Sci. 80, 1 (2005)

    Article  CAS  Google Scholar 

  33. E.T. Yu, Cross-sectional scanning tunneling microscopy. Chem. Rev. 97, 1017 (1997)

    Article  CAS  Google Scholar 

  34. X. Wu et al., Anomalous photoluminescence in \({\rm InP}_{1-x}{\rm Bi}_x\). Sci. Rep. 27867 (2016)

    Google Scholar 

  35. L. Gelczuk et al., Bi-induced acceptor level responsible for partial compensation of native free electron density in InP 1 x Bi x dilute bismide alloys. J. Phys. D: Appl. Phys. 49, 115107 (2016)

    Article  Google Scholar 

  36. S. Tixier et al., Surfactant enhanced growth of GaNAs and InGaNAs using bismuth. J. Cryst. Growth. 251, 449 (2003)

    Article  CAS  Google Scholar 

  37. M.R. Pillai et al., Growth of \({\rm In}_x{\rm Ga}_{1x}{\rm As/GaAs}\) heterostructures using Bi as a surfactant. J. Vac. Sci. & Technol. B. 18, 1232 (2000)

    Google Scholar 

  38. K. Muraki et al., Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 61, 557 (1992)

    Google Scholar 

  39. M.A. Berding et al., Structural properties of bismuth-bearing semiconductor alloys. J. Appl. Phys. 63, 107 (1988)

    Article  CAS  Google Scholar 

  40. L. Dominguez et al., Formation of tetragonal InBi clusters in InAsBi/InAs (100) heterostructures grown by molecular beam epitaxy. Appl. Phys. Exp. 6, 112601 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Koenraad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krammel, C.M., Koenraad, P.M., Roy, M., Maksym, P.A., Wang, S. (2019). Structural Properties of Bi Containing InP Films Explored by Cross-Sectional Scanning. In: Wang, S., Lu, P. (eds) Bismuth-Containing Alloys and Nanostructures. Springer Series in Materials Science, vol 285. Springer, Singapore. https://doi.org/10.1007/978-981-13-8078-5_10

Download citation

Publish with us

Policies and ethics