Skip to main content

Bionanopolymers for Drug Delivery

  • Chapter
  • First Online:
Green Biopolymers and their Nanocomposites

Abstract

Drug delivery in the field of medicine is a system that was developed mainly for the purpose of releasing, localizing, and targeting drugs at a particular site in the body, at the right time, period, and dose. The use of natural biopolymers in drug delivery systems dates back to as far as 1970. This is due to the uniqueness of their properties, especially their ability to undergo biodegradation. The use of these biopolymers have contributed largely to the advancement of this technology by adding its own properties to the drugs. Biopolymers like polysaccharides, polyesters, and polyamides are few examples of natural biopolymers employed for this application. They are produced by microorganisms and the fact that the microorganisms can be genetically manipulated gives room for the production of a wide range of biopolymers. Their existence ranges from viscous solutions to even plastics. Also, their physical properties depend on the composition of the biopolymer as well as its molecular weight. The ability to produce natural biopolymers with personalized properties via biotechnological techniques opens them up to several medical applications such as drug delivery. The properties, structure, synthesis, and most importantly the application of some natural biopolymers in drug delivery will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ad EA, Sin A (2013) Handbook of biopolymers and biodegradable plastics. Elsevier/William Andrew

    Google Scholar 

  2. Aggarwal G, Dhawan S (2009) Development, fabrication and evaluation of transdermal drug delivery system—a review. Pharmainfo.net, 7

    Google Scholar 

  3. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Controlled Release 100:5–28

    Article  CAS  Google Scholar 

  4. Akanksha B, Ganesh K, Preeti K (2014) Indian J Novel Drug Delivery 6:215–222

    Google Scholar 

  5. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  CAS  Google Scholar 

  6. Alves N, Mano J (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43:401–414

    Article  CAS  Google Scholar 

  7. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  Google Scholar 

  8. Andrade F, Goycoolea F, Chiappetta DA, Das Neves J, Sosnik A, Sarmento B (2011) Chitosan-grafted copolymers and chitosan-ligand conjugates as matrices for pulmonary drug delivery. Int J Carbohyd Chem 2011

    Google Scholar 

  9. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32

    Article  Google Scholar 

  10. Bae Y, Kataoka K (2006) Significant enhancement of antitumor activity and bioavailability of intracellular pH-sensitive polymeric micelles by folate conjugation. J Controlled Release 116:e49–e50

    Article  CAS  Google Scholar 

  11. Banakar UV (1987) Drug delivery systems of the 90s: innovations in controlled release. Am Pharm 27:39–44

    Article  Google Scholar 

  12. Bansal V, Sharma PK, Sharma N, Pal OP, Malviya R (2011) Applications of chitosan and chitosan derivatives in drug delivery. Adv Biol Res 5:28–37

    CAS  Google Scholar 

  13. Basarkar A, Singh J (2009) Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm Res 26:72–81

    Article  CAS  Google Scholar 

  14. Bender AR, Von Briesen H, Kreuter J, Duncan IB, Rübsamen-Waigmann H (1996) Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro. Antimicrob Agents Chemother 40:1467–1471

    Article  CAS  Google Scholar 

  15. Berth G, Dautzenberg H, Peter MG (1998) Physico-chemical characterization of chitosans varying in degree of acetylation. Carbohyd Polym 36:205–216

    Article  CAS  Google Scholar 

  16. Berthold A, Cremer K, Kreuter J (1998) Collagen microparticles: carriers for glucocorticosteroids. Eur J Pharm Biopharm 45:23–29

    Article  CAS  Google Scholar 

  17. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  Google Scholar 

  18. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Controlled Release 103:609–624

    Article  CAS  Google Scholar 

  19. Bhise KS, Dhumal RS, Paradkar AR, Kadam SS (2008) Effect of drying methods on swelling, erosion and drug release from chitosan–naproxen sodium complexes. AAPS PharmSciTech 9:1–12

    Article  CAS  Google Scholar 

  20. Bhowmik D, Gopinath H, Kumar BP, Duraivel S, Kumar KS (2012) Controlled release drug delivery systems. Pharma Innov 1

    Google Scholar 

  21. Bhowmik D, Kumar KS, Bhanot R (2017) Recent advances in transdermal drug delivery system. LAP LAMBERT Academic Publishing

    Google Scholar 

  22. Bissery M, Valeriote F, Thies C (1985) Therapeutic efficacy of CCNU-loaded microspheres prepared from poly (D, L) lactide (PLA) or poly-B-hydroxybutyrate (PHB) against Lewis lung (LL) carcinoma. In: Proceedings of the American Association for Cancer Research. AMER ASSOC CANCER RESEARCH PUBLIC LEDGER BLDG, SUITE 816, 150 S. INDEPENDENCE MALL W., PHILADELPHIA, PA 19106, 355

    Google Scholar 

  23. Boopathy R (2000) Factors limiting bioremediation technologies. Biores Technol 74:63–67

    Article  CAS  Google Scholar 

  24. Brahmankar D, Jaiswal S (2009) Biopharmaceutics and Pharmacokinetics: pharmacokinetics. Vallabh Prakashan, pp 399–401

    Google Scholar 

  25. Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Article  Google Scholar 

  26. Brigham CJ, Sinskey AJ (2012) Applications of polyhydroxyalkanoates in the medical industry. International Journal of Biotechnology for Wellness Industries 1:52–60

    Google Scholar 

  27. Brugnerotto J, Desbrières J, Roberts G, Rinaudo M (2001) Characterization of chitosan by steric exclusion chromatography. Polymer 42:09921–09927

    Article  CAS  Google Scholar 

  28. Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5:246–250

    Article  CAS  Google Scholar 

  29. Cammas S, Bear M-M, Moine L, Escalup R, Ponchel G, Kataoka K, Guérin P (1999) Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices. Int J Biol Macromol 25:273–282

    Article  CAS  Google Scholar 

  30. Cardoso MJ, Costa RR, Mano JF (2016) Marine origin polysaccharides in drug delivery systems. Marine drugs 14:34

    Article  CAS  Google Scholar 

  31. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  32. Chang S, Kramer W, Feldman S, Ballentine R, Frankel L (1981) Bioavailability of allopurinol oral and rectal dosage forms. Am J Health-Syst Pharm 38:365–368

    Article  CAS  Google Scholar 

  33. Chen H, Langer R (1998) Oral particulate delivery: status and future trends. Adv Drug Deliv Rev 34:339–350

    Article  CAS  Google Scholar 

  34. Chen S, Li Y, Guo C, Wang J, Ma J, Liang X, Yang L-R, Liu H-Z (2007) Temperature-responsive magnetite/PEO–PPO–PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir 23:12669–12676

    Article  CAS  Google Scholar 

  35. Cölfen H, Berth G, Dautzenberg H (2001) Hydrodynamic studies on chitosans in aqueous solution. Carbohyd Polym 45:373–383

    Article  Google Scholar 

  36. Connal LA, Li Q, Quinn JF, Tjipto E, Caruso F, Qiao GG (2008) pH-responsive poly (acrylic acid) core cross-linked star polymers: morphology transitions in solution and multilayer thin films. Macromolecules 41:2620–2626

    Article  CAS  Google Scholar 

  37. Costa RR, Custódio CA, Arias FJ, Rodríguez-Cabello JC, Mano JF (2013) Nanostructured and thermoresponsive recombinant biopolymer-based microcapsules for the delivery of active molecules. Nanomed Nanotechnol Biol Med 9:895–902

    Article  CAS  Google Scholar 

  38. Costa RR, Martín L, Mano JF, Rodríguez‐Cabello JC (2012) Elastin‐like macromolecules. In: Biomimetic approaches for biomaterials development, pp 93–116

    Chapter  Google Scholar 

  39. Couto DS, Hong Z, Mano JF (2009) Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater 5:115–123

    Article  CAS  Google Scholar 

  40. Daamen WF, Veerkamp J, Van Hest J, Van Kuppevelt T (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398

    Article  CAS  Google Scholar 

  41. De La Fuente M, Raviña M, Paolicelli P, Sanchez A, Seijo B, Alonso MJ (2010) Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev 62:100–117

    Article  CAS  Google Scholar 

  42. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12:1317–1324

    Article  CAS  Google Scholar 

  43. Díaz A, Katsarava R, Puiggalí J (2014) Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: From polyesters to poly (ester amide)s. Int J Mol Sci 15:7064–7123

    Article  CAS  Google Scholar 

  44. Doillon CJ, Silver FH, Berg RA (1987) Fibroblast growth on a porous collagen sponge containing hyaluronic acid and fibronectin. Biomaterials 8:195–200

    Article  CAS  Google Scholar 

  45. Donaldson K, Stone V, Tran C, Kreyling W, Borm PJ (2004) Nanotoxicology. BMJ Publishing Group Ltd

    Google Scholar 

  46. Doshi N, Mitragotri S (2009) Designer biomaterials for nanomedicine. Adv Func Mater 19:3843–3854

    Article  CAS  Google Scholar 

  47. Efthimiadou EK, Metaxa A-F, Kordas G (2015) Modified polysaccharides for drug delivery. Polysaccharides: Bioactivity and Biotechnology, pp 1805–1835

    Chapter  Google Scholar 

  48. El-Samaligy M, Rohdewald P (1983) Reconstituted collagen nanoparticles, a novel drug carrier delivery system. J Pharm Pharmacol 35:537–539

    Article  CAS  Google Scholar 

  49. Elzoghby AO, El-Fotoh WSA, Elgindy NA (2011) Casein-based formulations as promising controlled release drug delivery systems. J Controlled Release 153:206–216

    Article  CAS  Google Scholar 

  50. Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Controlled Release 157:168–182

    Article  CAS  Google Scholar 

  51. Elzoghby AO, Samy WM, Elgindy NA (2012) Protein-based nanocarriers as promising drug and gene delivery systems. J Controlled Release 161:38–49

    Article  CAS  Google Scholar 

  52. Errington N, Harding S, Vårum K, Illum L (1993) Hydrodynamic characterization of chitosans varying in degree of acetylation. Int J Biol Macromol 15:113–117

    Article  CAS  Google Scholar 

  53. Fee M, Errington N, Jumel K, Illum L, Smith A, Harding SE (2003) Correlation of SEC/MALLS with ultracentrifuge and viscometric data for chitosans. Eur Biophys J 32:457–464

    Article  CAS  Google Scholar 

  54. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993

    Article  CAS  Google Scholar 

  55. Friess W (1998) Collagen–biomaterial for drug delivery1. Eur J Pharm Biopharm 45:113–136

    Article  CAS  Google Scholar 

  56. Fujioka K, Takada Y, Sato S, Miyata T (1995) Novel delivery system for proteins using collagen as a carrier material: the minipellet. J Controlled Release 33:307–315

    Article  CAS  Google Scholar 

  57. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024

    Article  CAS  Google Scholar 

  58. Gandhi KJ, Deshmane SV, Biyani KR (2012) Polymers in pharmaceutical drug delivery system: a review. International journal of pharmaceutical sciences review and research 14:10

    Google Scholar 

  59. Gangrade N, Price JC (1991) Poly (hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties. J Microencapsul 8:185–202

    Article  CAS  Google Scholar 

  60. Gates KA, Grad H, Birek P, Lee PI (1994) A new bioerodible polymer insert for the controlled release of metronidazole. Pharm Res 11:1605–1609

    Article  CAS  Google Scholar 

  61. Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546

    Article  CAS  Google Scholar 

  62. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353:38–52

    Article  CAS  Google Scholar 

  63. Gould PL, Holland SJ, Tighe BJ (1987) Polymers for biodegradable medical devices. IV. Hydroxybutyrate-valerate copolymers as non-disintegrating matrices for controlled-release oral dosage forms. Int J Pharm 38:231–237

    Article  CAS  Google Scholar 

  64. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  Google Scholar 

  65. Gupta M, Sharma V (2011) Targeted drug delivery system: a Review. ResJ Chem Sci 1:134–138

    Google Scholar 

  66. Gürsel İ, Korkusuz F, Türesin F, Alaeddinoǧlu NG, Hasrc V (2000) In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis. Biomaterials 22:73–80

    Article  Google Scholar 

  67. Gursel I, Yagmurlu F, Korkusuz F, Hasirci V (2002) In vitro antibiotic release from poly (3-hydroxybutyrate-co-3-hydroxyvalerate) rods. J Microencapsul 19:153–164

    Article  CAS  Google Scholar 

  68. Harding SE (2006) Trends in muco-adhesive analysis. Trends Food Sci Technol 17:255–262

    Article  CAS  Google Scholar 

  69. Harding SE, Davis SB, Deacon MP, Fiebrig I (1999) Biopolymer mucoadhesives. Biotechnol Genet Eng Rev 16:41–86

    Article  CAS  Google Scholar 

  70. Hardy JG, Davis SS, Wilson CG (1989) Drug delivery to the gastrointestinal tract. Ellis Horwood, UK

    Google Scholar 

  71. Heiati H, Phillips NC, Tawashi R (1996) Evidence for phospholipid bilayer formation in solid lipid nanoparticles formulated with phospholipid and triglyceride. Pharm Res 13:1406–1410

    Article  CAS  Google Scholar 

  72. Holmes P (1988) Biologically produced (R)-3-hydroxy-alkanoate polymers and copolymers. In: Developments in crystalline polymers. Springer

    Google Scholar 

  73. Ilium L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15:1326–1331

    Article  Google Scholar 

  74. Illum L (2002) Nasal drug delivery: new developments and strategies. Drug Discovery Today 7:1184–1189

    Article  CAS  Google Scholar 

  75. Jain D, Panda AK, Majumdar DK (2005) Eudragit S100 entrapped insulin microspheres for oral delivery. AAPS PharmSciTech 6:E100–E107

    Article  Google Scholar 

  76. Jain KK (2008) Nanomedicine: application of nanobiotechnology in medical practice. Med Principles Pract 17:89–101

    Article  CAS  Google Scholar 

  77. Jalwal P, Jangra A, Dahiya L, Sangwan Y, Saroha R (2010) A review on transdermal patches. Pharma Res 3:139–149

    Google Scholar 

  78. Jantzen GM, Robinson JR (1996) Sustained-and controlled-release drug delivery systems. Drugs Pharm Sci 72:575–610

    Google Scholar 

  79. Jiang G-B, Quan D, Liao K, Wang H (2006) Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol Pharm 3:152–160

    Article  CAS  Google Scholar 

  80. Jintapattanakit A, Junyaprasert VB, Mao S, Sitterberg J, Bakowsky U, Kissel T (2007) Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int J Pharm 342:240–249

    Article  CAS  Google Scholar 

  81. Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N (2004) Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci 95:377–384

    Article  CAS  Google Scholar 

  82. Kasaai MR (2007) Calculation of Mark–Houwink–Sakurada (MHS) equation viscometric constants for chitosan in any solvent–temperature system using experimental reported viscometric constants data. Carbohyd Polym 68:477–488

    Article  CAS  Google Scholar 

  83. Kasoju N, Ali SS, Dubey VK, Bora U (2013) Exploiting the potential of Collagen as a natural biomaterial in drug delivery. J Proteins Proteomics 1

    Google Scholar 

  84. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    Article  CAS  Google Scholar 

  85. Kawaguchi T, Tsugane A, Higashide K, Endoh H, Hasegawa T, Kanno H, Seki T, Juni K, Fukushima S, Nakano M (1992) Control of drug release with a combination of prodrug and polymer matrix: Antitumor activity and release profiles of 2′, 3′-diacyl-5-fluoro-2′-deoxyuridine from poly (3-hydroxybutyrate) microspheres. J Pharm Sci 81:508–512

    Article  CAS  Google Scholar 

  86. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    Article  CAS  Google Scholar 

  87. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326

    Article  CAS  Google Scholar 

  88. Kessler B, Witholt B (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86:97–104

    Article  CAS  Google Scholar 

  89. Kim GJ, Nie S (2005) Targeted cancer nanotherapy. Mater Today 8:28–33

    Article  Google Scholar 

  90. Kim J, Conway A, Chauhan A (2008) Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses. Biomaterials 29:2259–2269

    Article  CAS  Google Scholar 

  91. Koch-Weser J, Sellers EM (1976) Binding of drugs to serum albumin. N Engl J Med 294:311–316

    Article  CAS  Google Scholar 

  92. Kohmura E, Yuguchi T, Yoshimine T, Fujinaka T, Koseki N, Sano A, Kishino A, Nakayama C, Sakaki T, Nonaka M (1999) BDNF atelocollagen mini-pellet accelerates facial nerve regeneration. Brain Res 849:235–238

    Article  CAS  Google Scholar 

  93. Kretlow JD, Klouda L, Mikos AG (2007) Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:263–273

    Article  CAS  Google Scholar 

  94. Kucharz EJ (1992) Degradation. In: The collagens: biochemistry and pathophysiology. Springer

    Google Scholar 

  95. Kumar JA, Pullakandam N, Prabu SL, Gopal V (2010) Transdermal drug delivery system: an overview. Int J Pharm Sci Rev Res 3:49–54

    CAS  Google Scholar 

  96. Kumar KS, Bhowmik D, Srivastava S, Paswan S, Dutta AS (2012) Sustained release drug delivery system potential. Pharma Innov 1

    Google Scholar 

  97. Kurkuri MD, Nussio MR, Deslandes A, Voelcker NH (2008) Thermosensitive copolymer coatings with enhanced wettability switching. Langmuir 24:4238–4244

    Article  CAS  Google Scholar 

  98. Kutmalge M, Jadhav A, Ratnaparkhi M, Chaudhari S (2014) Sustained release drug delivery system. Terminology 1:2

    Google Scholar 

  99. Lachman L, Lieberman HA, Kanig JL (1986) The theory and practice of industrial pharmacy. Lea & Febiger

    Google Scholar 

  100. Lamarque G, Lucas J-M, Viton C, Domard A (2005) Physicochemical behavior of homogeneous series of acetylated chitosans in aqueous solution: role of various structural parameters. Biomacromol 6:131–142

    Article  CAS  Google Scholar 

  101. Le Tien C, Lacroix M, Ispas-Szabo P, Mateescu M-A (2003) N-acylated chitosan: hydrophobic matrices for controlled drug release. J Controlled Release 93:1–13

    Article  CAS  Google Scholar 

  102. Lee JS, Bae JW, Joung YK, Lee SJ, Han DK, Park KD (2008) Controlled dual release of basic fibroblast growth factor and indomethacin from heparin-conjugated polymeric micelle. Int J Pharm 346:57–63

    Article  CAS  Google Scholar 

  103. Lee SY (1996) Biotechnol Bioeng 49:1–14

    Article  CAS  Google Scholar 

  104. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromol 6:1–8

    Article  CAS  Google Scholar 

  105. Li VH, Robinson J, Lee V, Hui H (1987) Controlled drug delivery: fundamentals and applications. Marcel Dekker, Inc., New York, pp 373–432

    Google Scholar 

  106. Lin Y-H, Chen C-T, Liang H-F, Kulkarni AR, Lee P-W, Chen C-H, Sung H-W (2007) Novel nanoparticles for oral insulin delivery via the paracellular pathway. Nanotechnology 18:105102

    Article  CAS  Google Scholar 

  107. Liu L, Fishman ML, Kost J, Hicks KB (2003) Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 24:3333–3343

    Article  CAS  Google Scholar 

  108. Longer MA, Ch’ng HS, Robinson JR (1985) Bioadhesive polymers as platforms for oral controlled drug delivery III: oral delivery of chlorothiazide using a bioadhesive polymer. J Pharm Sci 74:406–411

    Article  CAS  Google Scholar 

  109. Lu C, Mu B, Liu P (2011) Stimuli-responsive multilayer chitosan hollow microspheres via layer-by-layer assembly. Colloids Surf, B 83:254–259

    Article  CAS  Google Scholar 

  110. Lu X-Y, Ciraolo E, Stefenia R, Chen G-Q, Zhang Y, Hirsch E (2011) Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines. Appl Microbiol Biotechnol 89:1423–1433

    Article  CAS  Google Scholar 

  111. Lucas PA, Syftestad GT, Goldberg VM, Caplan AI (1989) Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a collagenous delivery vehicle. J Biomed Mater Res, Part A 23:23–39

    Article  CAS  Google Scholar 

  112. Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  Google Scholar 

  113. Maeda M, Tani S, Sano A, Fujioka K (1999) Microstructure and release characteristics of the minipellet, a collagen-based drug delivery system for controlled release of protein drugs. J Controlled Release 62:313–324

    Article  CAS  Google Scholar 

  114. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397

    Article  CAS  Google Scholar 

  115. Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 10:515–527

    Article  CAS  Google Scholar 

  116. Mao S, Germershaus O, Fischer D, Linn T, Schnepf R, Kissel T (2005) Uptake and transport of PEG-graft-trimethyl-chitosan copolymer–insulin nanocomplexes by epithelial cells. Pharm Res 22:2058–2068

    Article  CAS  Google Scholar 

  117. Mao S, Shuai X, Unger F, Wittmar M, Xie X, Kissel T (2005) Synthesis, characterization and cytotoxicity of poly (ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials 26:6343–6356

    Article  CAS  Google Scholar 

  118. Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27

    Article  CAS  Google Scholar 

  119. Mark S, Torchilin VP (2011) Drug delivery systems. Access Science. McGraw-Hill Companies

    Google Scholar 

  120. Martin L, Wilson CG, Koosha F, Uchegbu IF (2003) Sustained buccal delivery of the hydrophobic drug denbufylline using physically cross-linked palmitoyl glycol chitosan hydrogels. Eur J Pharm Biopharm 55:35–45

    Article  CAS  Google Scholar 

  121. Marty J (1978) Nanoparticles-a new colloidal drug delivery system. Pharm Acta Helv 53:17–23

    CAS  Google Scholar 

  122. Matsuoka J, Sakagami K, Shiozaki S, Uchida S, Fujiwara T, Gohchi A, Orita K (1988) Development of an interleukin-2 slow delivery system. ASAIO Trans 34:729–731

    CAS  Google Scholar 

  123. Mazeau K, Rinaudo M (2004) The prediction of the characteristics of some polysaccharides from molecular modeling. Comparison with effective behavior. Food Hydrocolloids 18:885–898

    Article  CAS  Google Scholar 

  124. Mehta R (2004) Topical and transdermal drug delivery: what a pharmacist needs to know. Inet Continuing education, InetCE.com, 1–10

    Google Scholar 

  125. Miyata T, Rubin AL, Stenzel KH, Dunn MW (1979) Collagen drug delivery device. Google Patents

    Google Scholar 

  126. Mizrahy S, Peer D (2012) Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev 41:2623–2640

    Article  CAS  Google Scholar 

  127. Morris GA, Castile J, Smith A, Adams GG, Harding SE (2009) The kinetics of chitosan depolymerisation at different temperatures. Polym Degrad Stab 94:1344–1348

    Article  CAS  Google Scholar 

  128. Morris GA, Castile J, Smith A, Adams GG, Harding SE (2009) Macromolecular conformation of chitosan in dilute solution: a new global hydrodynamic approach. Carbohyd Polym 76:616–621

    Article  CAS  Google Scholar 

  129. Morris GA, Kök SM, Harding SE, Adams GG (2010) Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol Genet Eng Rev 27:257–284

    Article  CAS  Google Scholar 

  130. Mourya V, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013–1051

    Article  CAS  Google Scholar 

  131. Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113:151–170

    Article  CAS  Google Scholar 

  132. Muzzarelli R, Muzzarelli C (2009) Chitin and chitosan hydrogels. In: Handbook of hydrocolloids, 2nd edn. Elsevier

    Google Scholar 

  133. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  134. Nazemi K, Azadpour P, Moztarzadeh F, Urbanska A, Mozafari M (2015) Tissue-engineered chitosan/bioactive glass bone scaffolds integrated with PLGA nanoparticles: a therapeutic design for on-demand drug delivery. Mater Lett 138:16–20

    Article  CAS  Google Scholar 

  135. Nguyen DN, Raghavan SS, Tashima LM, Lin EC, Fredette SJ, Langer RS, Wang C (2008) Enhancement of poly (orthoester) microspheres for DNA vaccine delivery by blending with poly (ethylenimine). Biomaterials 29:2783–2793

    Article  CAS  Google Scholar 

  136. Nguyen TTB, Hein S, Ng CH, Stevens WF (2008) Molecular stability of chitosan in acid solutions stored at various conditions. J Appl Polym Sci 107:2588–2593

    Article  CAS  Google Scholar 

  137. Nimni ME, Cheung D, Strates B, Kodama M, Sheikh K (1987) Chemically modified collagen: a natural biomaterial for tissue replacement. J Biomed Mater Res, Part A 21:741–771

    Article  CAS  Google Scholar 

  138. Nitta SK, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14:1629–1654

    Article  CAS  Google Scholar 

  139. Nobes G, Maysinger D, Marchessault R (1998) Polyhydroxyalkanoates: materials for delivery systems. Drug Delivery 5:167–177

    Article  CAS  Google Scholar 

  140. Nolkrantz K, Farre C, Brederlau A, Karlsson RI, Brennan C, Eriksson PS, Weber SG, Sandberg M, Orwar O (2001) Electroporation of single cells and tissues with an electrolyte-filled capillary. Anal Chem 73:4469–4477

    Article  CAS  Google Scholar 

  141. Ogawa K, Yui T (1994) Effect of explosion on the crystalline polymorphism of chitin and chitosan. Biosci Biotechnol Biochem 58:968–969

    Article  CAS  Google Scholar 

  142. Orts WJ, Nobes GA, Kawada J, Nguyen S, Yu G-E, Ravenelle F (2008) Poly (hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Can J Chem 86:628–640

    Article  CAS  Google Scholar 

  143. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  CAS  Google Scholar 

  144. Papi M, Palmieri V, Maulucci G, Arcovito G, Greco E, Quintiliani G, Fraziano M, De Spirito M (2011) Controlled self assembly of collagen nanoparticle. J Nanopart Res 13:6141–6147

    Article  CAS  Google Scholar 

  145. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887

    Article  CAS  Google Scholar 

  146. Park JH, Saravanakumar G, Kim K, Kwon IC (2010) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev 62:28–41

    Article  CAS  Google Scholar 

  147. Park SY, Lee BI, Jung ST, Park HJ (2001) Biopolymer composite films based on κ-carrageenan and chitosan. Mater Res Bull 36:511–519

    Article  CAS  Google Scholar 

  148. Patnaik AN, Nagarjuna T, Thulasiramaraju T (2013) Sustained release drug delivery system: a modern formulation approach. Int J Res Pharm Nano Sci 2:586–601

    CAS  Google Scholar 

  149. Piez K (1985) Collagen. Encycl Polymer Sci 3:699–727

    CAS  Google Scholar 

  150. Piez KA (1984) Molecular and aggregate structures of the collagens. Elsevier, New York

    Google Scholar 

  151. Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Nat Biotechnol 13:142

    Article  CAS  Google Scholar 

  152. Popli H, Sharma S (1989) Trends in oral sustained release formulation-I. Eastern Pharm 32:99–103

    Google Scholar 

  153. Pourjavadi A, Barzegar S (2009) Smart pectin-based superabsorbent hydrogel as a matrix for ibuprofen as an oral non-steroidal anti-inflammatory drug delivery. Starch-Stärke 61:173–187

    Article  CAS  Google Scholar 

  154. Prabaharan M, Mano J (2004) Chitosan-based particles as controlled drug delivery systems. Drug Delivery 12:41–57

    Article  CAS  Google Scholar 

  155. Prabaharan M, Mano JF (2005) Hydroxypropyl chitosan bearing β-cyclodextrin cavities: synthesis and slow release of its inclusion complex with a model hydrophobic drug. Macromol Biosci 5:965–973

    Article  CAS  Google Scholar 

  156. Prabaharan M, Reis R, Mano J (2007) Carboxymethyl chitosan-graft-phosphatidylethanolamine: amphiphilic matrices for controlled drug delivery. React Funct Polym 67:43–52

    Article  CAS  Google Scholar 

  157. Prego C, Fabre M, Torres D, Alonso M (2006) Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res 23:549–556

    Article  CAS  Google Scholar 

  158. Rajam M, Pulavendran S, Rose C, Mandal A (2011) Chitosan nanoparticles as a dual growth factor delivery system for tissue engineering applications. Int J Pharm 410:145–152

    Article  CAS  Google Scholar 

  159. Rani K, Paliwal S (2014) A review on targeted drug delivery: its entire focus on advanced therapeutics and diagnostics. Sch J App Med Sci 2:328–331

    Google Scholar 

  160. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2013) Introduction-biomaterials science. In: Biomaterials science: an introduction to materials, 3rd edn. Elsevier Inc

    Google Scholar 

  161. Reddy C, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Biores Technol 87:137–146

    Article  CAS  Google Scholar 

  162. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  163. Roldo M, Hornof M, Caliceti P, Bernkop-Schnürch A (2004) Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur J Pharm Biopharm 57:115–121

    Article  CAS  Google Scholar 

  164. Rössler B, Kreuter J, Ross G (1994) Effect of collagen microparticles on the stability of retinol and its absorption into hairless mouse skin in vitro. Pharmazie 49:175–179

    Google Scholar 

  165. Rössler B, Kreuter J, Scherer D (1995) Collagen microparticles: preparation and properties. J Microencapsul 12:49–57

    Article  Google Scholar 

  166. Roy K, Mao H-Q, Huang S-K, Leong KW (1999) Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387

    Article  CAS  Google Scholar 

  167. Sahithi B, Ansari S, Hameeda S, Sahithya G, Prasad DM, Lakshmi Y (2013) A review on collagen based drug delivery systems. Indian J Res Pharm Biotechnol 1:461

    CAS  Google Scholar 

  168. Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R (2007) Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol 7:2833–2841

    Article  CAS  Google Scholar 

  169. Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R (2007) Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromol 8:3054–3060

    Article  CAS  Google Scholar 

  170. Sasisekharan V, Yathindra N (1999) The Madras Group and the structure of collagen. In: Proceedings of the Indian Academy of Sciences-Chemical Sciences. Springer, pp 5–12

    Google Scholar 

  171. Schatz C, Viton C, Delair T, Pichot C, Domard A (2003) Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromol 4:641–648

    Article  CAS  Google Scholar 

  172. Sendil D, Gürsel I, Wise DL, Hasrc V (1999) Antibiotic release from biodegradable PHBV microparticles. J Controlled Release 59:207–217

    Article  CAS  Google Scholar 

  173. Seyednejad H, Gawlitta D, Dhert WJ, Van Nostrum CF, Vermonden T, Hennink WE (2011) Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomater 7:1999–2006

    Article  CAS  Google Scholar 

  174. Shah M, Ullah N, Choi MH, Kim MO, Yoon SC (2012) Amorphous amphiphilic P (3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation. Eur J Pharm Biopharm 80:518–527

    Article  CAS  Google Scholar 

  175. Shah NM, Pool MD, Metters AT (2006) Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels. Biomacromol 7:3171–3177

    Article  CAS  Google Scholar 

  176. Shantha Kumar T, Soppimath K, Nachaegari S (2006) Novel delivery technologies for protein and peptide therapeutics. Curr Pharm Biotechnol 7:261–276

    Article  Google Scholar 

  177. Sharma K, Singh V, Arora A (2011) Natural biodegradable polymers as matrices in transdermal drug delivery. Int J Drug Dev Res 3

    Google Scholar 

  178. Sharma R (2014) An overview of future prospect of Aloe vera gel as nano drug carrier. In: Shukla JP (ed) Technologies for sustainable rural development having potential of socioeconomic upliftment. Allied Publishers, New Delhi, 173–179

    Google Scholar 

  179. Shishatskaya E, Goreva A, Voinova O, Inzhevatkin E, Khlebopros R, Volova T (2008) Evaluation of antitumor activity of rubomycin deposited in absorbable polymeric microparticles. Bull Exp Biol Med 145:358–361

    Article  CAS  Google Scholar 

  180. Shrivastav A, Kim H-Y, Kim Y-R (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed Res Int 2013

    Google Scholar 

  181. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  CAS  Google Scholar 

  182. Singh S, Pandey VK, Tewari RP, Agarwal V (2011) Nanoparticle based drug delivery system: advantages and applications. Indian J Sci Technol 4:177–180

    CAS  Google Scholar 

  183. Singla A, Chawla M (2001) Chitosan: some pharmaceutical and biological aspects—an update. J Pharm Pharmacol 53:1047–1067

    Article  CAS  Google Scholar 

  184. Sinha V, Singla A, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S (2004) Chitosan microspheres as a potential carrier for drugs. Int J Pharm 274:1–33

    Article  CAS  Google Scholar 

  185. Skaugrud Ø, Hagen A, Borgersen B, Dornish M (1999) Biomedical and pharmaceutical applications of alginate and chitosan. Biotechnol Genet Eng Rev 16:23–40

    Article  CAS  Google Scholar 

  186. Sriamornsak P (2003) Chemistry of pectin and its pharmaceutical uses: a review. Silpakorn Univ Int J 3:206–228

    Google Scholar 

  187. Srivastava A, Yadav T, Sharma S, Nayak A, Kumari AA, Mishra N (2015) Polymers in drug delivery. J Biosci Med 4:69

    Google Scholar 

  188. Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  Google Scholar 

  189. Steinbüchel A, Schlegel H (1991) Physiology and molecular genetics of poly (β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5:535–542

    Article  Google Scholar 

  190. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  191. Tahrir F, Ganji F, Ahooyi TM (2015) Injectable thermosensitive chitosan/glycerophosphate-based hydrogels for tissue engineering and drug delivery applications: a review. Recent Pat Drug Delivery Formulation 9:107–120

    Article  CAS  Google Scholar 

  192. Takenaka H (1986) New formulation of bioactive materials. Pharm Technol Jpn 2:1083–1091

    Google Scholar 

  193. Tamilvanan S, Venkateshan N, Ludwig A (2008) The potential of lipid-and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Controlled Release 128:2–22

    Article  CAS  Google Scholar 

  194. Tang Y, Singh J (2008) Controlled delivery of aspirin: effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems. Int J Pharm 357:119–125

    Article  CAS  Google Scholar 

  195. Terbojevich M, Cosani A, Conio G, Marsano E, Bianchi E (1991) Chitosan: chain rigidity and mesophase formation. Carbohyd Res 209:251–260

    Article  CAS  Google Scholar 

  196. Timpl R (1984) Immunology of the collagens. In: Extracellular matrix biochemistry, pp 159–190

    Google Scholar 

  197. Torchilin V (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71:431–444

    Article  CAS  Google Scholar 

  198. Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9:E128–E147

    Article  CAS  Google Scholar 

  199. Torchilin VP (2012) Multifunctional nanocarriers. Adv Drug Deliv Rev 64:302–315

    Article  Google Scholar 

  200. Türesin F, Gürsel I, Hasirci V (2001) Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J Biomater Sci Polym Ed 12:195–207

    Article  Google Scholar 

  201. Vårum KM, Anthonsen MW, Grasdalen H, Smidsrod O (1991) 13C-Nmr studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohyd Res 217:19–27

    Article  Google Scholar 

  202. Vårum KM, Antohonsen MW, Grasdalen H, Smidsrod O (1991) Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field nmr spectroscopy. Carbohyd Res 211:17–23

    Article  Google Scholar 

  203. Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058

    Article  CAS  Google Scholar 

  204. Velásquez CL, Albornoz JS, Barrios EM (2008) Viscosimetric studies of chitosan nitrate and chitosan chlorhydrate in acid free NaCl aqueous solution. e-Polymers 8

    Google Scholar 

  205. Verma P, Thakur A, Deshmukh K, Jha A, Verma S (2010) Routes of drug administration. Int J Pharm Stud Res 1:54–59

    Google Scholar 

  206. Vikas K, Arvind S, Ashish S, Gourav J, Vipasha D (2011) Recent advances in Ndds (Nov el Drug Delivery System) for delivery of anti-hypertensive drugs. Int J Drug Dev Res 3

    Google Scholar 

  207. Vold IMN (2004) Periodate oxidised chitosans: structure and solution properties

    Google Scholar 

  208. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307–344

    Article  CAS  Google Scholar 

  209. Vuignier K, Schappler J, Veuthey J-L, Carrupt P-A, Martel S (2010) Drug–protein binding: a critical review of analytical tools. Anal Bioanal Chem 398:53–66

    Article  CAS  Google Scholar 

  210. Vyas SP, Khar RK (2004) Targeted & controlled drug delivery: novel carrier systems. CBS Publishers & Distributors

    Google Scholar 

  211. Wani MS (2008) Controlled release system—a review. Pharm Rev 6:41–46

    Google Scholar 

  212. Watanabe M, Kawano K, Toma K, Hattori Y, Maitani Y (2008) In vivo antitumor activity of camptothecin incorporated in liposomes formulated with an artificial lipid and human serum albumin. J Controlled Release 127:231–238

    Article  CAS  Google Scholar 

  213. Wijekoon A, Fountas-Davis N, Leipzig ND (2013) Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing. Acta Biomater 9:5653–5664

    Article  CAS  Google Scholar 

  214. Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N (2010) Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 9:923

    Article  CAS  Google Scholar 

  215. Wu J, Su Z-G, Ma G-H (2006) A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int J Pharm 315:1–11

    Article  CAS  Google Scholar 

  216. Wu J, Wei W, Wang L-Y, Su Z-G, Ma G-H (2007) A thermosensitive hydrogel based on quaternized chitosan and poly (ethylene glycol) for nasal drug delivery system. Biomaterials 28:2220–2232

    Article  CAS  Google Scholar 

  217. Yadav N, Morris G, Harding S, Ang S, Adams G (2009) Various non-injectable delivery systems for the treatment of diabetes mellitus. Endocr Metab Immune Disord-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders) 9:1–13

    Google Scholar 

  218. Yagmurlu MF, Korkusuz F, Gürsel I, Korkusuz P, Örs Ü, Hasirci V (1999) Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: In vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J Biomed Mater Res, Part A 46:494–503

    Article  CAS  Google Scholar 

  219. Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ (1999) Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Controlled Release 59:299–307

    Article  CAS  Google Scholar 

  220. Yang YY, Wang Y, Powell R, Chan P (2006) Polymeric core-shell nanoparticles for therapeutics. Clin Exp Pharmacol Physiol 33:557–562

    Article  CAS  Google Scholar 

  221. Yannas I, Burke J, Gordon P, Huang C, Rubenstein R (1980) Design of an artificial skin. II. Control of chemical composition. J Biomed Mater Res, Part A 14:107–132

    Article  CAS  Google Scholar 

  222. Yannas I, Burke JF (1980) Design of an artificial skin. I. Basic design principles. J Biomed Mater Res, Part A 14:65–81

    Article  CAS  Google Scholar 

  223. Yu D-G, Lin W-C, Yang M-C (2007) Surface modification of poly (L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer. Bioconjug Chem 18:1521–1529

    Article  CAS  Google Scholar 

  224. Zhang X, Zhang H, Wu Z, Wang Z, Niu H, Li C (2008) Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur J Pharm Biopharm 68:526–534

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Oluwaseun Fasiku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fasiku, V.O. et al. (2019). Bionanopolymers for Drug Delivery. In: Gnanasekaran, D. (eds) Green Biopolymers and their Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8063-1_8

Download citation

Publish with us

Policies and ethics