Skip to main content

The Use of Biopolymers in Food Packaging

  • Chapter
  • First Online:
Green Biopolymers and their Nanocomposites

Abstract

From manufacturing, distribution, storage, and consumption phase of any product, packaging materials play vital roles. They are designed to be able to safeguard, contain, and handle products for onward-distribution either as raw materials or ready-to-eat food products. However, current food-packaging innovations are driving toward the use of materials with light in order to achieve the reduction of high raw materials, low transportation cost, lessen waste and wide areas for storage. This goal is achievable with the use of biopolymers because of their great advantages. Disposing massive quantities of wastes generated by non-biodegradable packaging material pave ways for the study of biopolymers as alternative materials for food packaging. Also, the increase in prices of petrochemicals and environmental effects now push up material development made from natural polymeric materials for various applications in food-packaging materials, which are more consumer-friendly. This study looks deep to food-packaging materials made from biopolymers. Their types, sources, advantages, limitations as well as future innovations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rockström J, Steffen W, Noone K, Persson Å, Chapin III FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14(2). https://www.jstor.org/stable/26268316

  2. Food and Agriculture Organization (FAO) of the United Nations (2010) World food and agriculture in review part II. Accessed on 27 Jan 2018

    Google Scholar 

  3. Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31(1):179–194

    Article  Google Scholar 

  4. Bangemann M (1994) Recommendations to the European Council: Europe and the global information society. European Commission, Brussels. Available online http://channelingreality.com/Digital_Treason/Brussels_1995/Bangemann_report.pdf. Accessed 20 July 2018

  5. Dukalska L, Muizniece-Brasava S, Kampuse S, Seglina D, Straumite E, Galoburda R, Levkane V (2008) Studies of biodegradable polymer material suitability for food packaging applications. foodbalt, Jelgava, pp 64–8

    Google Scholar 

  6. North EJ, Halden RU (2013) Plastics and environmental health: the road ahead. Rev Environ Health 28(1):1–8. https://doi.org/10.1515/reveh-2012-0030

    Article  CAS  Google Scholar 

  7. Azeredo HMC, Miranda KWE, Ribeiro HL, Rosa MF, Nascimento DM (2012) Nanoreinforced alginate–acerola puree coatings on acerola fruits. J Food Eng 113(4):505–510

    Article  CAS  Google Scholar 

  8. Othman ST (2014) Bio-nanocomposite materials for food packaging application: types of biopolymer nad nano-sized filler. Agric Agric Sci Procedia 2:296–303

    Google Scholar 

  9. Liu D, Nikoo M, Boran G, Zhou P, Regenstein JM (2015) Collagen and gelatin. Annu Rev Food Sci Technol 527–557

    Article  CAS  Google Scholar 

  10. Galgano F (2015) Biodegradable packaging and edible coating for fresh-cut fruits and vegetables Italian. J Food Sci 27(1):1–20

    CAS  Google Scholar 

  11. Mensitieri G, di Maio E, Buonocore GG, Nedi I, Oliviero M, Sansone L, Iannace S (2011) Processing and shelf life issues of selected food packaging materials and structures from renewable resources. Trends Food Sci Technol 72–80

    Article  CAS  Google Scholar 

  12. Coles R (2003) Introduction. In: Coles R, McDowell D, Kirwan MJ (eds) Food packaging technology, vol 5. Blackwell Publishing. CRC Press. pp 1–31

    Google Scholar 

  13. Adeyeye OA, Sadiku ER, Selvam P, Perumal AB, Nambiar RB (2017) Post-Harvest preservation of mango using tray and freeze drying methods. OIDA Int J Sustain Dev 10(9):11–20. ISSN 1923-6654 (print) ISSN 1923-6662 (online) www.oidaijsd.com

  14. Lopez-Rubio A, Almenar E, Hernandez- Munoz P, Lagaron JM, Catala R, Gavara R (2004) Overview of active polymer-based packaging technologies for food applications. Food Rev Int 20(4):357–387

    Article  CAS  Google Scholar 

  15. Aloui H, Khwaldia K, Ben Slama M, Hamdi M (2011) Effect of glycerol and coating weight on functional properties of biopolymer-coated paper. Carbohyd Polym 86(2):1063–1072

    Article  CAS  Google Scholar 

  16. Vieira MGA, da Silva MA, Oliveira dos Santos L, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263

    Article  CAS  Google Scholar 

  17. Prashanth KVH, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18(3):117–131

    Article  CAS  Google Scholar 

  18. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165

    Article  CAS  Google Scholar 

  19. Bravin B, Peressini D, Sensidoni A (2006) Development and application of polysaccharide–lipid edible coating to extend shelf-life of dry bakery products. J Food Eng 76(3):280–290

    Article  CAS  Google Scholar 

  20. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14(3):71–78

    Article  CAS  Google Scholar 

  21. Rodraguez M, Oses J, Ziani K, Mate JI (2006) Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Res Int 39:840–846

    Article  Google Scholar 

  22. Di Pierro P, Sorrentino A, Mariniello L, Giosafatto CVL, Porta R (2011) Chitosan/whey protein film as active coating to extend Ricotta cheese shelflife. LWT-Food Sci Technol 44(10):2324–2327

    Article  Google Scholar 

  23. Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40(3):175–181

    Article  CAS  Google Scholar 

  24. Fernandez-Saiz P, Ocio MJ, Lagaron JM (2010) Antibacterial chitosan-based blends with ethylene–vinyl alcohol copolymer. Carbohydr Polym 80(3):874–884

    Article  CAS  Google Scholar 

  25. Merzendorfer H (2011) The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur J Cell Biol 90(9):759–769

    Article  CAS  Google Scholar 

  26. Miteluț AC, Tănase EE, Popa VI, Popa ME (2015) Sustainable alternative for food packaging: Chitosan biopolymer—a review. AgroLife Scientific Journal 4(2):52–61

    Google Scholar 

  27. Lo YM, Robbins KL, Argin-Soysal S, Sadar LN (2003) Viscoelastic effects on the diffusion properties of curdlan gels. J Food Sci 68: 2057–2063

    Article  CAS  Google Scholar 

  28. Nishinari K (2007) Rheological and related studies on industrially important polysaccharides and proteins. J Cent South Univ T 14:498–504

    Article  Google Scholar 

  29. Lo CT, Ramsden L (2000) Effects of xanthan and galactomannan on the freeze/thaw. Properties of starch gels. Nahrung 44:211–214

    Article  CAS  Google Scholar 

  30. Mcintosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1 → 3)-β-Dglucans. Appl Microbiol Biot 68:163–173

    Article  CAS  Google Scholar 

  31. Wielinga WC, Maehall AG (2000) Galactomannans. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press LLC, Boca Raton 137–154

    Google Scholar 

  32. Funami T, Nishinari K (2007) Gelling characteristics of curdlanaqueous dispersions in the presence of salts. Food Hydrocolloids 21:59–65

    Article  CAS  Google Scholar 

  33. Rein DM, Khalfin R, Cohen Y (2012) Cellulose as a novel amphiphilic coating for oil-in-water and water-in-oil dispersions. J Colloid Interface Sci 386(1):456–463

    Article  CAS  Google Scholar 

  34. Prajapati VD, Maheriya PM, Jani GK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112

    Article  CAS  Google Scholar 

  35. Kong L, Ziegler GR (2013) Fabrication of κ-carrageenan fibers by wet spinning: addition of ι-carrageenan. Food Hydrocolloids 30(1):302–306

    Article  CAS  Google Scholar 

  36. Plotto A, Narciso JA, Rattanapanone N, Baldwin EA (2010) Surface treatments and coatings to maintain fresh-cut mango quality in storage. J Sci Food Agric 90(13):2333–2341

    Article  CAS  Google Scholar 

  37. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114(1):1–14

    Article  CAS  Google Scholar 

  38. Moresi M, Bruno M, Parente E (2004) Viscoelastic properties of microbial alginate gels by oscillatory dynamic tests. J Food Eng 64(2):179–186

    Article  Google Scholar 

  39. Sriamornsak P, Kennedy RA (2008) Swelling and diffusion studies of calcium polysaccharide gels intended for film coating. Int J Pharm 358(1–2):205–213

    Article  CAS  Google Scholar 

  40. Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ (2001) Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog 17(5):945–950

    Article  CAS  Google Scholar 

  41. Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137:360–374

    Article  CAS  Google Scholar 

  42. Kohli P, Gupta R (2015) Alkaline pectinases: a review. Biocatal Agric Biotechnol 4:279–285

    Article  Google Scholar 

  43. Ciolacu L, Nicolau AI, Hoorfar J (2014) Global safety of fresh produce. A handbook of best practice, innovative commercial solutions and case studies. Woodhead Publishing Limited, Sawston, UK

    Chapter  Google Scholar 

  44. Munarin F, Tanzi MC, Petrini P (2012) Advances in biomedical applications of pectin gels. Int J Biol Macromol 51:681

    Article  CAS  Google Scholar 

  45. Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot 67(4):833–848

    Article  CAS  Google Scholar 

  46. Kumar D (2012) An insight to pullulan: a biopolymer in pharmaceutical approaches. Int J Basic Appl Sci 1:202–219

    Google Scholar 

  47. Gounga ME, Xu SY, Wang Z, Yang WG (2008) Effect of whey proteinisolate-pullulan edible coating on the quality and shelf life of freshly roasted and freeze-dried Chinese chestnut. J Food Sci 73:155–161

    Article  Google Scholar 

  48. Kim J-Y, Choi Y-G, Byul Kim SR, Lim S-T (2014) Humidity stability of tapioca starch pullulan composite films. Food Hydrocoll 41:140–145

    Article  CAS  Google Scholar 

  49. Chlebowska-Smigiel A, Gniewosz M, Swinczak E (2007) Acta Sci Polym Technol Aliment 6:49

    CAS  Google Scholar 

  50. Leela KJ, Sharma G (2000) Studies on xanthan production from xanthomonas campestris. Bioprocess Eng 23:687–689

    Article  Google Scholar 

  51. de Lopes BM, Lessa VL, Silva BM, de Carvalho MAS, Schnitzler E, Lacerda LG (2015) Xanthan gum: properties, production conditions, quality and economic perspective. J Food Nutr Res 54(3):185–194

    Google Scholar 

  52. Schmid M, Dallmann K, Bugnicourt E, Cordoni D, Wild F, Lazzeri A, Noller K (2012) Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. Int J Polym Sci. http://dx.doi.org/10.1155/2012/562381

  53. Tomasula PM, Sousa AMM, Liou SC, Li R, Bonnaillie LM, Liu LS (2016) Electrospinning of casein/pullulan blends for food-grade applications. J Dairy Sci 99(3):1837–1845

    Article  CAS  Google Scholar 

  54. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344

    Article  CAS  Google Scholar 

  55. Guerrero P, Stefani PM, Ruseckaite RA, de la Caba K (2011) Functional properties of films based on soy protein isolate and gelatin processed by compression molding. J Food Eng 65–72

    Article  CAS  Google Scholar 

  56. Lagrain B, Goderis B, Brijs K, Delcour JA (2010) Molecular basis of processing wheat gluten toward biobased materials. Biomacromol 11(3):533–541

    Article  CAS  Google Scholar 

  57. Dash S, Swain SK (2013) Effect of nanoboron nitride on the physical and chemical properties of soy protein. Compos Sci Technol 39–43

    Article  CAS  Google Scholar 

  58. Galus S, Mathieu H, Lenart A, Debeaufort F (2012) Effect of modified starch or maltodextrin incorporation on the barrier and mechanical properties, moisture sensitivity and appearance of soy protein isolate-based edible films. Innov. Food Sci Emerg Technol 148–154

    Article  CAS  Google Scholar 

  59. Tansaz S, Boccaccini AR (2016) Biomedical applications of soy protein: a brief overview. J Biomed Mater Res A 553–569

    Article  Google Scholar 

  60. Tian H, Xu G, Yang B, Guo G (2011) Microstructure and mechanical properties of soy protein/agar blend films: effect of composition and processing methods. J Food Eng 107(1):21–26

    Article  CAS  Google Scholar 

  61. Jeevahan J, Mageshwaran G, Joseph GB, Raj RD, Kannan RT (2017) Various strategies for reducing NOx emissions of biodiesel fuel used in conventional diesel engines: a review. Chem Eng Commun 204(10):1202–1223

    Article  CAS  Google Scholar 

  62. Cao N, Fu Y, He J (2007) Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocolloids 21(7):1153–1162

    Article  CAS  Google Scholar 

  63. Chen H (1995) Functional properties and application of edible films made of milk proteins. J Dairy Sci 78:2563–2583

    Article  CAS  Google Scholar 

  64. Schmid M, Wild F, Agulla K (2010) All the whey-packaging made from dairy products. Packag Prof 10–11

    Google Scholar 

  65. Schmid M et al (2009) Whey coated plastic films to replace expensive polymers and increase recyclability. In: 12th Tappi European place conference, 18–20 May 2009, Budapest, Tappi

    Google Scholar 

  66. Bugnicourt E, Schmid M, Schmid M, Mc Nerney O, Wild F (2010) Whey-layer: the barrier coating of the future. Coat Int 7–10

    Google Scholar 

  67. Selling GW, Sessa DJ, Palmquist DE (2004) Effect of water and tri(ethylene) glycol on the rheological properties of zein. Polymer 45:4249–4255

    Article  CAS  Google Scholar 

  68. Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crops Prod 13(3):171–192

    Article  CAS  Google Scholar 

  69. Corradini E, Curtis PS, Meniqueti AB, Alessandro F, Rubira Martins Adley F, Muniz EC (2014) Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Int J Mol Sci 15:22438–22470

    Article  CAS  Google Scholar 

  70. Borges JG, Silva AG, Cervi-Bitencourt CM, Vanin FM, Carvalho RA (2016) Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: functional properties. Int J Biol Macromol 86:907–916

    Article  CAS  Google Scholar 

  71. Wu X, Liu Y, Liu A, Wang W (2017) Improved thermal-stability and mechanical properties of type I collagen by crosslinking with casein, keratin and soy protein isolate using transglutaminase. Int J Biol Macromol 98:292–301

    Article  CAS  Google Scholar 

  72. Yang H, Guo X, Chen X, Shu Z (2014) Preparation and characteristics of collagen food packaging film. J Chem Pharm Res 6(6):740–745

    Google Scholar 

  73. Gennadios A, Hanna MA, Kurth LB (1997) Application of edible coatings on meats, poultry and seafoods: a review. LWT-Food Sci Technol 30(4):337–350

    Article  CAS  Google Scholar 

  74. Wang Z, Hu S, Wang H (2017) Scale-up preparation and characterization of collagen/sodium alginate blend films. J Food Q. https://doi.org/10.1155/2017/4954259

    Google Scholar 

  75. Hernande-Izquierdo VM, Krochta JM (2008) Thermoplastic processing of proteins for film formation-a review. J Food Sci 73(2)

    Google Scholar 

  76. Shankar S, Jaiswal L, Rhim JW (2016) Gelatin-based nanocomposite films: Potential use in antimicrobial active packaging. In: Antimicrobial food packaging; Elsevier, Amsterdam, The Netherlands 339–348

    Chapter  Google Scholar 

  77. Jongjareonrak A, Benjakul S, Visessanguan W, Prodpran T, Tanaka M (2006) Characterization of edible films from skin gelatin of brown stripe red snapper and bigeye snapper. Food Hydrocolloids 20:492–501

    Article  CAS  Google Scholar 

  78. Orts WJ, Nobes GAR, Kawada J, Nguyen S, Yu GE, Ravenelle F (2008) Poly(hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Can J Chem 86:628–640

    Article  CAS  Google Scholar 

  79. Bucci DZ, Tavares LBB, Sell I (2005) PHB packaging for the storage of food products. Polym Test 24:564–571

    Article  CAS  Google Scholar 

  80. Wang L et al (2008) Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. J Appl Polym Sci 107:166–173

    Article  CAS  Google Scholar 

  81. Bang G, Kim SW (2012) Biodegradable poly (lactic acid)-based hybrid coating materials for food packaging films with gas barrier properties. J Ind Eng Chem 18(3):1063–1068

    Article  CAS  Google Scholar 

  82. Lotti M, Fabbri P, Messori M, Pilati F, Fava P (2009) Organic-inorganic hybrid coatings for the modification of barrier properties of poly(lactic acid) films for food packaging applications. J Polym Environ 17(1):10–33

    Article  CAS  Google Scholar 

  83. Bhatia A, Gupta R, Bhattacharya S, Choi H (2007) Compatibility of biodegradable poly (lactic acid) (PLA) and Poly (butylene succinate) (PBS) blends for packaging application. Korea-Aust Rheol J 19(3):125–131

    Google Scholar 

  84. Jin T, Zhang H (2008) Biodegradable polylactic acid polymer with Nisin for use in antimicrobial food packaging. J Food Sci 73(3):127–134

    Article  Google Scholar 

  85. Brown AM (2015) How can we live in a world without plastic? The telegraph. www.telegraph.co.uk/comment/11733021/how-can-we-live-in-a-world-without-plastic.html. Assessed on 23 Feb 2018

  86. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land to ocean. Res Rep 347(6223):768–771

    CAS  Google Scholar 

  87. Adjouman YD, Nindjin C, Tetchi FA, Dalcq AC, Amani NG et al (2017) Water vapor permeability of edible films based on improved cassava (Manihot esculenta Crantz) native starches. J Food Process Technol 8:665. https://doi.org/10.4172/2157-7110.1000665

    Article  CAS  Google Scholar 

  88. Song F, Tang D-L, Wang X-L, Wang Y-Z (2011) Biodegradable soy protein isolate-based materials: a review. Biomacromolecules 3369–3380

    Article  CAS  Google Scholar 

  89. Gabor (Naiaretti) D, Tita O (2012) Biopolymers used: in food packaging: a review. Acta Univ Cibiniensis Ser E: Food Technol XVI(2):1–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Adeyeye or Emmanuel Rotimi Sadiku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adeyeye, O.A. et al. (2019). The Use of Biopolymers in Food Packaging. In: Gnanasekaran, D. (eds) Green Biopolymers and their Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8063-1_6

Download citation

Publish with us

Policies and ethics