Skip to main content

Biocomposite Reinforced with Nanocellulose for Packaging Applications

  • Chapter
  • First Online:
Green Biopolymers and their Nanocomposites

Abstract

The extraction of nanocellulose from cellulosic fibers and development of nanocellulose-based composites and materials have revolutionized the field of renewable and sustainable materials. Nanocellulose is rod-like nanoparticles, which can be obtained from various sources like cotton, wood, agricultural residues, and bacteria. There are mainly two types of nanocellulose: cellulose nanocrystals (CNCs) which are produced by chemical treatment method and cellulose nanofibrils (CNFs) which are obtained by mechanical or chemical treatments. Both materials exhibit unique and useful properties like abundance, renewability, excellent mechanical property, optical property, non-toxicity, tunable surface chemistry, eco-friendliness, and low cost. These properties make nanocellulose of great interest for the application in the field of food packaging. This book chapter aims to provide an overview of the recent developments in nanocellulose-reinforced composites for packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BCC Research (2013) BCC Research publishes a new report on global markets for biodegradable polymers. Available at http://www.bccresearch.com/pressroom/pls/global-volume-biodegradable-polymers-market-reach-3-billion-2019

  2. Fischer HR, Gielgens LH, Koster TPM (1999) Nanocomposites from polymers and layered minerals. Acta Polym 50:122–126

    Article  CAS  Google Scholar 

  3. Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crops Prod 97:664–671

    Article  CAS  Google Scholar 

  4. Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polymer J 49:780–792

    Article  CAS  Google Scholar 

  5. Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosanderivatives for the detoxification of water and wastewater—a short review. Adv Coll Interface Sci 152:26–38

    Article  CAS  Google Scholar 

  6. Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18:117–131

    Article  CAS  Google Scholar 

  7. Kanatt SR, Rao MS, Chawla SP, Sharma A (2012) Active chitosanpolyvinyl alcohol films with natural extracts. Food Hydrocolloids 29:290–297

    Article  CAS  Google Scholar 

  8. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/ poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481

    Article  CAS  Google Scholar 

  9. Abdelrazek EM, Abdelghany A, Tarabih A (2012) Characterization and physical properties of silver/PVA nanocomposite. Res J Pharm Biol Chem Sci 3:448–459

    CAS  Google Scholar 

  10. Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73:8–17

    Article  CAS  Google Scholar 

  11. Ardanuy M, Claramunt J, Garcia-Hortal JA, Barra M (2011) Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers. Cellulose 18:281–289

    Article  CAS  Google Scholar 

  12. Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573

    Article  CAS  Google Scholar 

  13. Morais JPS, Rosa MS, Filho MMS, Nascimento LD, Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91:229–235

    Article  CAS  Google Scholar 

  14. Zhao X-B, Wang L, Liu D-H (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 83:950–956

    Article  CAS  Google Scholar 

  15. Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmentally-friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483

    Article  CAS  Google Scholar 

  16. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(277):1–24

    Article  Google Scholar 

  17. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and application. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  18. Jeihanipour A, Taherzadeh MJ (2009) Ethanol production from cotton-based waste textiles. Biores Technol 100:1007–1010

    Article  CAS  Google Scholar 

  19. Wang QQ, Zhu JY, Reiner RS, Verrill SP, Baxa U, MeNeil SE (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047

    Article  CAS  Google Scholar 

  20. Krishnan VN, Ramesh A (2013) Synthesis and characterisation of CNF from Coconut coir fibres. IOSR-J Appl Chem 6:18–23

    Article  CAS  Google Scholar 

  21. Zhou Y, Canek FH, Talha MK, Liu JC, James H, Shim JW, Amir D, Youngblood PJ, Robert JM, Bernard K (2013) Recyclable organic solar cells on cellulose nanocrystal substrate. Sci Rep 3:1536

    Article  CAS  Google Scholar 

  22. Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681

    Article  CAS  Google Scholar 

  23. Miri N, Abdelouahdi K, Zahouily M, Fihri A, Barakat A, Solhy A, Achaby M (2015) Bio-nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/chitosan polymer blend. J Appl Polym Sci. https://doi.org/10.1002/app.42004

    Article  CAS  Google Scholar 

  24. Terech P, Chazeau L, Cavaille JY (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32:1872–1875

    Article  CAS  Google Scholar 

  25. Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45

    Article  CAS  Google Scholar 

  26. Mujtaba M, Salaberria AM, Andres MA, Kayaa M, Gunyakti A, Labidi J (2017) Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films. Int J Biol Macromol 104:944–952

    Article  CAS  Google Scholar 

  27. Achaby ME, Kassab Z, Aboulkas A, Gaillard C, Barakat A (2018) Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. Int J Biol Macromol 106:681–691

    Article  CAS  Google Scholar 

  28. Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter

    Google Scholar 

  29. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  30. Chandra CSJ, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166

    Article  CAS  Google Scholar 

  31. Jorfi M, Amiralian N, Biyani MV, Annamalai PK (2013) In: Thakur VK, Singha AS (eds) Biomass-based biocomposites, vol 14. Smithers Rapra Technology, pp 277–304

    Google Scholar 

  32. Sofla MRK, Brown RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci: Nanosci Nanotechnol 7. https://doi.org/10.1088/2043-6262/7/3/035004

    Google Scholar 

  33. Wang HD, Jessop PG, Bouchard J, Champagne P, Cunningham MF (2015) Cellulose nanocrystals with CO2-switchable aggregation and redispersion properties. Cellulose 22:3105–3116

    Article  CAS  Google Scholar 

  34. Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016) Shear rheology of polylactide (PLA)-cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897

    Article  CAS  Google Scholar 

  35. Song T, Tanpichai S, Oksman K (2016) Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23:1925–1938

    Article  CAS  Google Scholar 

  36. Feng X, Meng XH, Zhao JP, Miao M, Shi LY, Zhang SP, Fang JH (2015) Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose 22:1763–1772

    Article  CAS  Google Scholar 

  37. Lu QL, Lin WY, Tang LR, Wang SQ, Chen XR, Huang B (2015) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50:611–619

    Article  CAS  Google Scholar 

  38. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131

    Article  CAS  Google Scholar 

  39. Khandelwal M, Windle AH, Hessler N (2016) In situ tunability of bacteria produced cellulose by additives in the culture media. J Mater Sci 51:4839–4844

    Article  CAS  Google Scholar 

  40. Santos SM, Carbajo JM, Gomez N, Quintana E, Ladero M, Sanchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration. Part I: application on model papers. J Mater Sci 51:1541–1552

    Article  CAS  Google Scholar 

  41. Santos SM, Carbajo JM, Gomez N, Quintana E, Ladero M, Sanchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration. Part II: application on real samples. J Mater Sci 51:1553–1561

    Article  CAS  Google Scholar 

  42. Achaby M, Miri N, Aboulkas A, Zahouily M, Essaid B, Barakat A, Solhy A (2017) Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol 96:340–352

    Article  CAS  Google Scholar 

  43. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99

    Article  CAS  Google Scholar 

  44. Anand Babu P, Periyar Selvam S, Nambiar RB, Rotimi Sadiku E, Goitse P, Jayaramudu J (2018) Effects of multiscale rice straw (Oryza sativa) as reinforcing filler in montmorillonite-polyvinyl alcohol biocomposite packaging film for enhancing the storability of postharvest mango fruit (Mangifera indica L.). Appl Clay Sci 158:1–10

    Article  CAS  Google Scholar 

  45. Danial WH, Majid ZA, Muhid MNM, Triwahyono S, Bakar MB, Ramli Z (2015) The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydr Polym 118:165–169

    Article  CAS  Google Scholar 

  46. Voon LK, Pang SC, Chin SF (2016) Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes. Carbohydr Polym 142:31–37

    Article  CAS  Google Scholar 

  47. Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174

    Article  CAS  Google Scholar 

  48. Dufresne A (1997) Mechanical behavior of films prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Google Scholar 

  49. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  50. Azeredo HM, Mattoso LH, Avena-Bustillos RJA, Filho GC, Munford ML, Wood D, Mchugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7

    Article  CAS  Google Scholar 

  51. Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch based nanocomposites reinforced with flax cellulose nanocrystals. Polymer Lett 2:502–510

    Article  CAS  Google Scholar 

  52. Dieter-Klemm D, Schumann D, Kramer F, Hessler N, Koth D, Sultanova B (2009) Nanocellulose materials: different cellulose, different functionality. Macromol Symp 280:60–71

    Article  CAS  Google Scholar 

  53. Dieter-Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96

    Article  CAS  Google Scholar 

  54. Pecoraro E, Manzani D, Messaddeq Y, Ribeiro SJL (2008) Bacterial cellulose from Gluconacetobacter xylinus: preparation, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Oxford, pp 369–383

    Google Scholar 

  55. Chang S-T, Chen L-C, Lin S-B, Chen H-H (2012) Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocolloids 27:137–144

    Article  CAS  Google Scholar 

  56. Duarte EB, Chagas BS, Andrade FK, Santa Brígida AI, Borges MF, Muniz CR, Souza Filho MSM, Morais JPS, Feitosa JPA, Rosa MF (2015) Production of hydroxyapatite–bacterial cellulose nanocomposites from agroindustrial wastes. Cellulose 22:3177–3187

    Article  CAS  Google Scholar 

  57. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Biores Technol 99:1664–1671

    Article  CAS  Google Scholar 

  58. Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985

    Article  CAS  Google Scholar 

  59. Fatah IYA, Khalil HPS, Hossain MS, Aziz AA, Davoudpour Y, Dungani R, Bhat A (2014) Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulosic fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials. Polymers 6:2611–2624

    Article  CAS  Google Scholar 

  60. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442

    Article  CAS  Google Scholar 

  61. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  Google Scholar 

  62. Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  Google Scholar 

  63. Camargo LA, Pereira SC, Correa AC, Farinas CS, Marconcini JM, Mattoso LHC (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. Bioenergy Res 9:894–906

    Article  CAS  Google Scholar 

  64. Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem A, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431

    Article  CAS  Google Scholar 

  65. Oun AA, Rhim J-W (2016) Isolation of cellulose nanocrystals from grain straws and their use forthe preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydr Polym 150:187–200

    Article  CAS  Google Scholar 

  66. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  67. Zainuddin SYZ, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A (2013) Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydr Polym 92:2299–2305

    Article  CAS  Google Scholar 

  68. Wang Z, Yao Z, Zhou J, Zhang Y (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr Polym 157:945–952

    Article  CAS  Google Scholar 

  69. Thambiraj S, Ravi Shankaran D (2017) Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Appl Surf Sci 412:405–416

    Article  CAS  Google Scholar 

  70. Fortunati E, Benincasa P, Balestra GM, Luzi F, Mazzaglia A, Del Buono D, Puglia D, Torre L (2016) Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Ind Crops Prod 92:201–217

    Article  CAS  Google Scholar 

  71. Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230

    Article  CAS  Google Scholar 

  72. Luzi F, Fortunati E, Giovanale G, Mazzaglia A, Torre L, Balestra GM (2017) Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications. Int J Biol Macromol 104:43–55

    Article  CAS  Google Scholar 

  73. Shamskar KR, Heidari H, Rashidi A (2016) Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind Crops Prod 93:203–211

    Article  CAS  Google Scholar 

  74. Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:1010–1018

    Article  CAS  Google Scholar 

  75. Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289

    Article  CAS  Google Scholar 

  76. Cudjoe E, Hunsen M, Xue Z, Way AE, Barrios E, Olson RA, Hore MJA, Rowan SJ (2017) Miscanthus Giganteus: a commercially viable sustainable source of cellulose nanocrystals. Carbohydr Polym 155:230–241

    Article  CAS  Google Scholar 

  77. Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (3-caprolactone)-grafted cellulose nanocrystals by ringopening polymerization. J Mater Chem 18:5002–5010

    Article  CAS  Google Scholar 

  78. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8

    Google Scholar 

  79. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345

    Article  CAS  Google Scholar 

  80. Roman M, Gray DG (2005) Parabolic focal conics in self-assembled solid film of cellulose nanocrystals. Langmuir 21:5555–5561

    Article  CAS  Google Scholar 

  81. Zhao Y, Zhang Y, Lindström ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films andnanocomposite films with glucomannans. Carbohydr Polym 117:286–296

    Article  CAS  Google Scholar 

  82. Neto WPF, Mariano M, da Silva ISV, Silvério HA, Putaux JL, Otaguro H, Pasquini H (2016) Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym 153:143–152

    Article  CAS  Google Scholar 

  83. Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88:772–779

    Article  CAS  Google Scholar 

  84. Silvério HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436

    Article  CAS  Google Scholar 

  85. Brito BSL, Pereira FV, Putaux J-L, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536

    Article  CAS  Google Scholar 

  86. Pereira AL, do Nascimento DM, Souza Filho MDS, Morais JP, Vasconcelos NF, Feitosa JP, Brígidae AI, Rosac MF (2014) Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym 112:165–172

    Article  CAS  Google Scholar 

  87. Kanoth BP, Thomas T, Joseph JM, Kuthirummal N, Narayanankutty SK (2015) A cost-effective method to prepare cellulose nanofiber from coir. Adv Sci, Eng Med 7:492–497

    Article  CAS  Google Scholar 

  88. Anand Babu P, Periyar Selvam S, Nambiar RB, Rotimi Sadiku E (2018) Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.01.022

    Article  CAS  Google Scholar 

  89. Popescu M-C (2017) Structure and sorption properties of CNC reinforced PVA films. Int J Biol Macromol 101:783–790

    Article  CAS  Google Scholar 

  90. Savadekar NR, Karande VS, Vigneshwaran N, Bharimalla AK, Mhaske ST (2012) Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. Int J Biol Macromol 51:1008–1013

    Article  CAS  Google Scholar 

  91. Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639

    CAS  Google Scholar 

  92. Jonoobi M, Khazaeian A, Tahir PM, Azry SS, Oksman K (2011) Characteristics of cellulose nanofibers isolated from rubber wood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095

    Article  CAS  Google Scholar 

  93. Habibi Y, Vignon M (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185

    Article  CAS  Google Scholar 

  94. Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils—an enzymatic approach. BioResources 1:176–188

    Google Scholar 

  95. Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos A Appl Sci Manuf 36:1486–1493

    Article  CAS  Google Scholar 

  96. Castro C, Zuluaga R, Álvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037

    Article  CAS  Google Scholar 

  97. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  98. George J, Bawa AS, Siddaramaiah (2010) Synthesis and characterization of bacterial cellulose nanocrystals and their PVA nanocomposites. Adv Mater Res 123–125:383–386

    Article  CAS  Google Scholar 

  99. George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial celulose nanocrystals. Carbohydr Polym 87:2031–2037

    Article  CAS  Google Scholar 

  100. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol)grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  101. Fortunati E, Luzi F, Jiménez A, Gopakumar DA, Puglia D, Thomas S, Kenny JM, Chiralt A, Torre L (2016) Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr Polym 149:357–368

    Article  CAS  Google Scholar 

  102. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238

    Article  CAS  Google Scholar 

  103. Madhu K, Carole F, Grégory C, Jean-Luc P, Audrey M (2015) Transmission electron microscopy for the characterization of cellulose nanocrystals. Intech publisher. http://dx.doi.org/10.5772/60985

  104. Martins DF, de Souza AB, Henrique MA, Silverio HA, Flauzino Neto WP, Pasquini D, Silvério HA, Flauzino Neto WP, Pasquini D (2015) The influence of the cellulose hydrolysis process on the structure of cellulose nanocrystals extracted from capim mombaça (Panicum maximum). Ind Crops Prod 65:496–505

    Article  CAS  Google Scholar 

  105. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432

    Article  CAS  Google Scholar 

  106. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  107. De Souze Lima M, Borsali R (2004) Rod like cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  CAS  Google Scholar 

  108. Oksman K, Etang J, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenerg 35:146–152

    Article  CAS  Google Scholar 

  109. Kalia S, Kaith BS, Kaur I (eds) (2011) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, p 743

    Google Scholar 

  110. Guo J, Guo XX, Wang SQ, Yin YF (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr Polym 135:248–255

    Article  CAS  Google Scholar 

  111. Jin Y, Hengl N, Baup S, Pignon F, Gondrexon N, Sztucki M, Romdhane A, Guillet A, Aurousseau M (2015) Ultrasonic assisted cross-flow ultrafiltration of starch and cellulose nanocrystals suspensions: characterization at multi-scales. Carbohydr Polym 124:66–76

    Article  CAS  Google Scholar 

  112. Cao X, Ding B, Yu J, Al-Deyab SS (2012) Cellulose nanowhiskers extracted from TEMPO oxidized jute fibers. Carbohydr Polym 90:1075–1080

    Article  CAS  Google Scholar 

  113. Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177

    Article  CAS  Google Scholar 

  114. Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95:1394–1398

    Article  CAS  Google Scholar 

  115. Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508

    Article  CAS  Google Scholar 

  116. Herrera M, Mathew AP, Oksman K (2012) Comparison of cellulose nanowhiskers extracted from industrial bio-residue and commercial microcrystalline cellulose. Mater Lett 71:28–31

    Article  CAS  Google Scholar 

  117. Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8

    Article  CAS  Google Scholar 

  118. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  CAS  Google Scholar 

  119. Asefa T (2012) Chiral nematic mesoporous carbons from self-assembled nanocrystalline cellulose. Angew Chem Int Ed 51:2008–2010

    Article  CAS  Google Scholar 

  120. Cheung CCY, Giese M, Kelly JA, Hamad WY, McLachlan MJ (2013) Iridescent chiral nematic cellulose nanocrystal/polymer composites assembled in organic solvent. ACS Macro Lett 2:1016–1020

    Article  CAS  Google Scholar 

  121. Lagerwall JPF, Schutz C, Salajkova M, Noh JH, Park JH, Scalia G, Bergstrom L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:1–12

    Article  CAS  Google Scholar 

  122. Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crops Prod 71:44–53

    Article  CAS  Google Scholar 

  123. Li Y, Pickering KL (2008) Hemp fibre reinforced composites using chelator and enzyme treatments. Compos Sci Technol 68:3293–3298

    Article  CAS  Google Scholar 

  124. Van Sumere CF (1992) Retting of flax with special reference to enzyme retting. In: Sharma HSS, Van Sumere CF (eds) The biology and retting of flax, vol 157. Belfast, pp 153–193

    Google Scholar 

  125. Nykter M, Kymäläinen H-R, Thomsen AB, Lilholt H, Koponen H, Sjöberg AM, Thygesen A (2008) Effects of thermal and enzymatic treatments and harvesting time on the microbial quality and chemical composition of fibre hemp (Cannabis sativa L.). Biomass Bioenergy 32:392–399

    Article  CAS  Google Scholar 

  126. Wang HM (2003) Removing pectin and lignin during chemical processing of hemp for textile applications. Text Res J 73:664–669

    Article  CAS  Google Scholar 

  127. Zhang J, Henriksson G, Johansson G (2000) Polygalacturonase is the key component in enzymatic retting of flax. J Biotechnol 81:85–89

    Article  CAS  Google Scholar 

  128. Chen J, Wu D, Tam KC, Pan K, Zheng Z (2017) Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohydr Polym 157:1821–1829

    Article  CAS  Google Scholar 

  129. Morelli CL, Belgacem MN, Branciforti MC, Bretas RES, Crisci A, Bras J (2016) Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos A Appl Sci Manuf 83:80–88

    Article  CAS  Google Scholar 

  130. Siqueira G, Fraschini C, Bras J, Dufresne A, Prud’homme R, Laborie MP (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε caprolactone). Eur Polymer J 47:2216–2227

    Article  CAS  Google Scholar 

  131. Fortunati E, Rinaldi S, Peltzer M, Bloise N, Visai L, Armentano I, Jiménez A, Latterini L, Kenny JM (2014) Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohydr Polym 101:1122–1133

    Article  CAS  Google Scholar 

  132. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784

    Article  CAS  Google Scholar 

  133. Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  134. Huq T, Salmieri S, Khan A, Khan RA, Tien CL, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90:1757–1763

    Article  CAS  Google Scholar 

  135. Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromol 3:609–617

    Article  CAS  Google Scholar 

  136. Azeredo HMC, Miranda KWE, Rosa MF, Nascimento DM, De Moura MR (2012) Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT-Food Sci Technol 46:294–297

    Article  CAS  Google Scholar 

  137. Azeredo HMC, Miranda KWE, Ribeiro HL, Rosa MF, Nascimento DM (2012) Nanoreinforced alginate–acerola puree coatings on acerola fruits. J Food Eng 113:505–510

    Article  CAS  Google Scholar 

  138. Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM, Torre L (2014) Investigation of thermo-mechanical: chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur Polymer J 56:77–91

    Article  CAS  Google Scholar 

  139. Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956

    Article  CAS  Google Scholar 

  140. Pereda M, Dufresne A, Aranguren MI, Marcovich NE (2014) Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr Polym 101:1018–1026

    Article  CAS  Google Scholar 

  141. Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Berglund LA, Salmen L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81:394–401

    Article  CAS  Google Scholar 

  142. Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT-Food Sci Technol 47:400–406

    Article  CAS  Google Scholar 

  143. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  144. Peng X-W, Ren J-L, Zhong L-X, Sun R-C (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromol 12:3321–3329

    Article  CAS  Google Scholar 

  145. Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W (2011) HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 86:1549–1557

    Article  CAS  Google Scholar 

  146. George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57

    Article  CAS  Google Scholar 

  147. Soykeabkaew N, Laosat N, Ngaokla A, Yodsuwan N, Tunkasiri T (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72:845–852

    Article  CAS  Google Scholar 

  148. Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2011) Bacterial celulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym 83:1279–1284

    Article  CAS  Google Scholar 

  149. Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611

    Article  CAS  Google Scholar 

  150. Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8

    Article  CAS  Google Scholar 

  151. Mariano M, Chirat C, El Kissi N, Dufresne A (2014) Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly(butylene adipate-co-terephthalate). J Polym Sci, Part B: Polym Phys 52:791

    Article  CAS  Google Scholar 

  152. Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromol 12:2456–2465

    Article  CAS  Google Scholar 

  153. García MA, Pinotti A, Martino MN, Zaritzky NE (2004) Characterization of composite hydrocolloid films. Carbohydr Polym 56:339–345

    Article  CAS  Google Scholar 

  154. Miri NE, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, Achaby ME (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167

    Article  CAS  Google Scholar 

  155. Wu T, Farnood R, O’Kelly K, Chen B (2014) Mechanical behavior of transparent nanofibrillar cellulose-chitosan nanocomposite films in dry and wet conditions. J Mech Behav Biomed Mater 32:279–286

    Article  CAS  Google Scholar 

  156. Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608

    Article  CAS  Google Scholar 

  157. Li Q, Zhou J, Zhang L (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci, Part B: Polym Phys 47:1069–1077

    Article  CAS  Google Scholar 

  158. Dehnad D, Emam-Djomeh Z, Mirzaei H, Jafari SM, Dadashi S (2014) Optimization of physical and mechanical properties for chitosan nanocellulose biocomposites. Carbohydr Polym 105:222–228

    Article  CAS  Google Scholar 

  159. Pereda M, Amica G, Rácz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83

    Article  CAS  Google Scholar 

  160. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  161. Khan RA, Salmieri S, Dussault D, Uribe-Calderon J, Kamal MR, Safrany A, Lacroix M (2010) Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. J Agric Food Chem 58:7878–7885

    Article  CAS  Google Scholar 

  162. Boumail A, Salmieri S, Klimas E, Tawema PO, Bouchard J, Lacroix M (2013) Characterization of trilayer antimicrobial diffusion films (ADFs) based on methylcellulose-polycaprolactone composites. J Agric Food Chem 61:811–821

    Article  CAS  Google Scholar 

  163. Abdollahi M, Alboofetileh M, Behrooz R, Rezaei M, Miraki R (2013) Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. Int J Biol Macromol 54:166–173

    Article  CAS  Google Scholar 

  164. Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009

    Article  CAS  Google Scholar 

  165. López-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68:718–727

    Article  CAS  Google Scholar 

  166. George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy S, Siddaramaiah (2014) Hybrid HPMC nanocomposites containing bacterial celulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292

    Article  CAS  Google Scholar 

  167. Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258

    Article  CAS  Google Scholar 

  168. Follain N, Belbekhouche S, Bras J, Siqueira G, Marais S, Dufresne A (2013) Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. J Membr Sci 427:218–229

    Article  CAS  Google Scholar 

  169. Dhar P, Bhardwaj U, Kumar A, Katiyar V (2015) Poly(3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55:2388–2395

    Article  CAS  Google Scholar 

  170. Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531

    Article  CAS  Google Scholar 

  171. Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615

    Article  CAS  Google Scholar 

  172. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Article  CAS  Google Scholar 

  173. Mesquita JP, Donnici CL, Teixeira IF, Pereira FV (2012) Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr Polym 90:210–217

    Article  CAS  Google Scholar 

  174. Azeredo HMC, Mattoso LHC, Wood D, Williams TG, Avena-Bustillos RJ, McHugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:N31–N35

    Article  CAS  Google Scholar 

  175. Bideau B, Bras J, Saini S, Daneault C, Loranger E (2016) Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Mater Sci Eng: C 69:977–984

    Article  CAS  Google Scholar 

  176. Khan RA, Beck S, Dussault D, Salmieri S, Bouchard J, Lacroix M (2013) Mechanical and barrier properties of nanocrystalline cellulose reinforced poly(caprolactone) composites: effect of gamma radiation. J Appl Polym Sci. https://doi.org/10.1002/app.38896

    Article  CAS  Google Scholar 

  177. Bharimalla AK, Deshmukh SP, Vigneshwaran N, Patil PG, Prasad V (2017) Nanocellulose based polymer composites for applications in food packaging: future prospects and challenges. Polym Plast Technol Eng 56:805–823

    Google Scholar 

  178. Zhang X, Ma P, Zhang Y (2016) Structure and properties of surface-acetylated cellulose nanocrystal/poly(butylene adipate-co-terephtalate) composites. Polym Bull 73:2073–2085

    Article  CAS  Google Scholar 

  179. Morelli CL, Belgacem N, Bretas RES, Bras J (2016) Melt extruded nanocomposites of polybutylene adipate-co-terephthalate (PBAT) with phenylbutyl isocyanate modified cellulose nanocrystals. J Appl Polym Sci 133:43678. https://doi.org/10.1002/app.43678

    Article  CAS  Google Scholar 

  180. Habibi Y, Aouadi S, Raquez J-M, Dubois P (2013) Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose 20:2877–2885

    Article  CAS  Google Scholar 

  181. Castro DO, Frollini E, Ruvolo-Filho A, Dufresne A (2015) Green polyethylene and curauá cellulose nanocrystal based nanocomposites: effect of vegetable oils as coupling agent and processing technique. J Polym Sci, Part B: Polym Phys 53. https://doi.org/10.1002/polb.23729

    Article  CAS  Google Scholar 

  182. Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563

    Article  CAS  Google Scholar 

  183. Yousefian H, Rodrigue D (2015) Effect of nanocrystalline cellulose, chemical blowing agent and mold temperature on the morphological, physical and mechanical properties of polypropylene. J Appl Polym Sci 132:1–9

    Article  CAS  Google Scholar 

  184. Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973

    Article  CAS  Google Scholar 

  185. Kiziltas A, Nazari B, Kiziltas EE, Gardner DJS, Han Y, Rushing TS (2016) Cellulose nanofiber-polyethylene nanocomposites modified by polyvinyl alcohol. J Appl Polym Sci 133:1–8

    Article  CAS  Google Scholar 

  186. Sun X, Lu C, Liu Y, Zhang W, Zhang X (2014) Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydr Polym 101:642–649

    Article  CAS  Google Scholar 

  187. Zammarano M, Maupin PH, Sung LP, Gilman JW, McCarthy ED, Kim YS, Fox DM (2011) Revealing the interface in polymer nanocomposites. ACS Nano 5:3391–3399

    Article  CAS  Google Scholar 

  188. Kalia S, Dufresne A, Cherian BM, Kaith B, Avérous L, Njuguna J Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci

    Google Scholar 

  189. Lekakou C, Hearn A, Murugesh A, Le Page B (2007) Liquid composite moulding of fibre nanocomposites. Mater Sci Technol 23:487–491

    Article  CAS  Google Scholar 

  190. Lee KY, Shamsuddin SR, Fortea-Verdejo M, Bismarck A (2014) Manufacturing of robust natural fiber preforms utilizing bacterial cellulose as binder. J Vis Exp 87. https://doi.org/10.3791/51432

  191. Qamhia II, Sabo RC, Elhajjar RF (2013) Static and dynamic characterization of cellulose nanofibril scaffold-based composites. BioResources 9:381–392

    Article  Google Scholar 

  192. Barari B, Ellingham TK, Ghamhia II, Pillai KM, El-Hajjar R, Turng LS, Sabo R (2016) Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Compos B Eng 84:277–284

    Article  CAS  Google Scholar 

  193. Barari B, Omrani E, Moghadam AD, Menezes PL, Pillai KM, Rohatgi PK (2016) Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: an attempt to fabricate and scale the ‘Green’ composite. Carbohydr Polym 147:282–293

    Article  CAS  Google Scholar 

  194. Rahimi SK, Otaigbe JU (2016) Polyamide 6 nanocomposites incorporating cellulose nanocrystals prepared by In situ ring opening polymerization: viscoelasticity, creep behavior, and melt rheological properties. Polym Eng Sci 56:1045–1060

    Article  CAS  Google Scholar 

  195. Iyer KA, Torkelson JM (2015) Importance of superior dispersion versus filler surface modification in producing robust polymer nanocomposites: the example of polypropylene/nanosilica hybrids. Polymer 68:147–157

    Article  CAS  Google Scholar 

  196. Auad ML, Richardson T, Orts WJ, Medeiros ES, Mattoso LHC, Mosiewicki MA, Marcoviche NE, Arangurene MI (2011) Polyaniline-. modified cellulose nanofibrils as reinforcement of a smart poly-. urethane. Polym Int 60:743–750

    Article  CAS  Google Scholar 

  197. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    Article  CAS  Google Scholar 

  198. Rueda L, Saralegi A, Fernández-d’Arlas B, Zhou Q, Alonso-Varona A, Berglund LA, Mondragon I, Corcuera MA, Eceiza A (2013) In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites.Cell response evaluation. Cellulose 20:1819–1828

    Article  CAS  Google Scholar 

  199. Yu J, Wang C, Wang J, Chu F (2016) In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization. Carbohydr Polym 141:143–150

    Article  CAS  Google Scholar 

  200. Müller D, Cercená R, Aguayo AJG, Porto LM, Rambo CR, Barra GMO (2016) Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters. J Mater Sci: Mater Electron 27:8062–8067

    Google Scholar 

  201. Kaboorani A, Auclair N, Riedl B, Landry V (2016) Physical and morphological properties of UV-cured cellulose nanocrystal (CNC) based nanocomposite coatings for wood furniture. Prog Org Coat 93:17–22

    Article  CAS  Google Scholar 

  202. Khelifa F, Habibi Y, Bonnaud L, Dubois P (2016) Epoxy monomers cured by high cellulosic nanocrystal loading. ACS Appl Mater Interfaces 8:10535–10544

    Article  CAS  Google Scholar 

  203. Herrera MA, Sirviö JA, Mathew AP, Oksman K (2016) Environmental friendly and sustainable gas barrier on porous materials: nanocellulose coatings prepared using spin-and dip-coating. Mater Des 93:19–25

    Article  CAS  Google Scholar 

  204. Li Z, Renneckar S, Barone JR (2010) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17:57–68

    Article  CAS  Google Scholar 

  205. Mabrouk AB, Ferraria AM, do Rego AMB, Boufi S (2013) Highly transparent nancomposite films based on polybutylmethacrylate and functionalized cellulose nanocrystals. Cellulose 20:1711–1723

    Article  CAS  Google Scholar 

  206. Jiang F, Wang Z, Qiao Y, Wang Z, Tang C (2013) A novel architecture toward third-generation thermoplastic elastomers by a grafting strategy. Macromolecules 46:4772–4780

    Article  CAS  Google Scholar 

  207. Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromol 11:2683–2691

    Article  CAS  Google Scholar 

  208. Morelli CL, Belgacem MN, Branciforti MC, Salon MCB, Bras J, Bretas RES (2016) Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion. Polym Eng Sci 56:1339–1348

    Article  CAS  Google Scholar 

  209. Muller D, Rambo CR, Porto LM, Schreiner WH, Barraa GMO (2013) Structure and properties of polypyrrole/bacterial cellulose nanocomposites. Carbohydr Polym 94:655–662

    Article  CAS  Google Scholar 

  210. Witt MA, Valenga F, Blell R, Dotto ME, Bechtold IH, Felix O, Pires ATN, Decher G (2012) Layer-by-layer assembled films composed of “charge matched” and “length matched” polysaccharides: self-patterning and unexpected effects of the degree of polymerization. Biointerphases 7:1–10

    Article  CAS  Google Scholar 

  211. Cerclier C, Cousin F, Bizot H, Moreau C, Cathala B (2010) Elaboration of spin-coated cellulose-xyloglucan multilayered thin films. Langmuir 26:17248–17255

    Article  CAS  Google Scholar 

  212. Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013) Tunable green oxygen barrier through layerby-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92:2128–2134

    Article  CAS  Google Scholar 

  213. Strydom SJ, Otto DP, Liebenberg W, Lvov YM, de Villiers MM (2011) Preparation and characterization of directly compactible layer-by-layer nanocoated cellulose. Int J Pharm 404:57–65

    Article  CAS  Google Scholar 

  214. Jean B, Dubreuil F, Heux L, Cousin F (2008) Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir 24:3452–3458

    Article  CAS  Google Scholar 

  215. Cranston ED, Gray DG, Rutland MW (2010) Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose. Langmuir 26:17190–17197

    Article  CAS  Google Scholar 

  216. Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromol 11:473–480

    Article  CAS  Google Scholar 

  217. Mesquita JP, Patrício PS, Donnici CL, Petri DFS, de Oliveira LCA, Pereira FV (2011) Hybrid layer-by-layer assembly based on animal and vegetable structural materials: multilayered films of collagen and cellulose nanowhiskers. Soft Matter 7:4405–4413

    Article  CAS  Google Scholar 

  218. Dubief D, Samain E, Dufresne A (1999) Polysaccharides microcrystals reinforced amorphous poly(b-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771

    Article  CAS  Google Scholar 

  219. Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interfaces 7:53–67

    Article  CAS  Google Scholar 

  220. Dufresne A, Cavaille JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part 2: effect of processing and modeling. Polym Compos 18:198–210

    Article  CAS  Google Scholar 

  221. Bossard F, El Kissi N, D’Aprea A, Alloin F, Sanchez J-Y, Dufresne A (2010) Influence of dispersion procedure on rheological properties of aqueous solutions of high molecular weight PEO. Rheol Acta 49:529–540

    Article  CAS  Google Scholar 

  222. Cheng D, Wen Y, An X, Zhu X, Ni Y (2016) TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydr Polym 151:326–334

    Article  CAS  Google Scholar 

  223. Poaty B, Vardanyan V, Wilczak L, Chauve G, Riedl B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77:813–820

    Article  CAS  Google Scholar 

  224. Vardanyan V, Poaty B, Chauve G, Landry V, Galstian T, Riedl B (2014) Mechanical properties of UV-waterborne varnishes reinforced by cellulose nanocrystals. J Coat Technol Res 11:841–852

    Article  CAS  Google Scholar 

  225. Gardebjer S, Bergstrand A, Idstrom A, Borstell C, Naana S, Nordstierna L, Larsson A (2015) Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos Sci Technol 107:1–9

    Article  CAS  Google Scholar 

  226. Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromol 12:2617–2625

    Article  CAS  Google Scholar 

  227. Peresin MS, Habibi Y, Vesterinen AH, Rojas OJ, Pawlak JJ, Seppälä JV (2010) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromol 11:2471–2477

    Article  CAS  Google Scholar 

  228. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681

    Article  CAS  Google Scholar 

  229. Uddin AJ, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12:617–624

    Article  CAS  Google Scholar 

  230. Jo C, Lee JW, Lee KH, Byun MW (2001) Quality properties of pork sausage prepared with water-soluble chitosan oligomer. Meat Sci 59:369–375

    Article  CAS  Google Scholar 

  231. Aulin C, Salazar-Alvarez G, Lindstrom T (2012) High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4:6622–6628

    Article  CAS  Google Scholar 

  232. Ghaderi M, Mousavi M, Yoursefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65

    Article  CAS  Google Scholar 

  233. Piermaria JA, Pinotti A, Garcia MA, Abraham AG (2009) Films based on kefiran, an exopolysaccharide obtained from kefir grain: development and characterization. Food Hydrocolloids 2:684–690

    Article  CAS  Google Scholar 

  234. Smith SA (1986) Polyethylene, low density. In: The Wiley encyclopedia of packaging technology. Wiley

    Google Scholar 

  235. Salmieri S, Islam F, Khan RA, Hossain FM, Ibrahim HMM, Miao C, Hamad WY, Lacroix M (2014) Antimicrobial nanocomposite films made of poly(lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: part A—effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose 21:1837–1850

    Article  CAS  Google Scholar 

  236. Zhao Y, Simonsen J, Cavender G, Jung J, Fuchigami LH (2014) Nano-cellulose coatings to prevent damage in foodstuffs. US Patent 20140272013 A1

    Google Scholar 

  237. Dong F, Li S, Liu Z, Zhu K, Wang X, Jin C (2015) Improvement of quality and shelf life of strawberry with nanocellulose/chitosan composite coatings. Bangladesh J Bot 44:709–717

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Babu Perumal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perumal, A.B., Sellamuthu, P.S., Nambiar, R.B., Sadiku, E.R., Adeyeye, O.A. (2019). Biocomposite Reinforced with Nanocellulose for Packaging Applications. In: Gnanasekaran, D. (eds) Green Biopolymers and their Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8063-1_4

Download citation

Publish with us

Policies and ethics