Skip to main content

Opportunities for PLA and Its Blends in Various Applications

  • Chapter
  • First Online:
Green Biopolymers and their Nanocomposites

Abstract

PLA is one of the promising biopolymer featuring unique properties such as excellent biodegradability, biocompatibility, good mechanical strength and easy processability. Although its properties are comparable to synthetic polymers, its success is impeded by its cost and brittleness. In order to further extend its applicability in different fields, blending with other cheaper and ductile/flexible polymers has been subjecting of the research since its introduction early in the 1880s. It is recognized that direct blending usually results in unanticipated properties because of PLA immiscibility with other polymers. In this chapter, we discuss the challenges faced in direct blending PLA with other polymers and the use of compatibilizers and/or plasticizers to improve the processability and/or performance of the resulting blend. The opportunities and progress made with some strategies to minimize the immiscibility of PLA with other biopolymers are also discussed. We concluded with future trends and recommendations that should enable the production of high-end performance PLA-based bio-blends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym Degrad Stab 97:1822–1828

    Article  CAS  Google Scholar 

  2. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914

    Article  CAS  Google Scholar 

  3. Armentano I et al (2015a). Bio-based PLA_PHB plasticized blend films: processing and structural characterization. LWT-Food Sci Technol 64(2):980–988

    Article  CAS  Google Scholar 

  4. Armentano I et al (2015b) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems Express. Polym Lett 9:583–596

    Article  CAS  Google Scholar 

  5. Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Testing 32:760–768

    Article  CAS  Google Scholar 

  6. Arrieta MP, López J, Hernández A, Rayón E (2014) Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. Euro Polym J 50:255–270

    Article  CAS  Google Scholar 

  7. Arrieta MP, Samper MD, Aldas M, López J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10:1008

    Article  CAS  Google Scholar 

  8. Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Testing 43:27–37

    Article  CAS  Google Scholar 

  9. Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q (2013) Toughening of poly (l-lactide) with poly (ε-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54:5257–5266

    Article  CAS  Google Scholar 

  10. Balart JF, Fombuena V, Fenollar O, Boronat T, Sánchez-Nacher L (2016) Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos Part B Eng 86:168–177

    Article  CAS  Google Scholar 

  11. Bedő D, Imre B, Domján A, Schön P, Vancso GJ, Pukánszky B (2017) Coupling of poly (lactic acid) with a polyurethane elastomer by reactive processing. Euro Polym J 97:409–417

    Article  CAS  Google Scholar 

  12. Bher A, Unalan IU, Auras R, Rubino M, Schvezov CE (2018) Toughening of poly (lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets. Polymers 10:95

    Article  CAS  Google Scholar 

  13. Bie P, Liu P, Yu L, Li X, Chen L, Xie F (2013) The properties of antimicrobial films derived from poly (lactic acid)/starch/chitosan blended matrix. Carbohydr Polym 98:959–966

    Article  CAS  Google Scholar 

  14. Bitinis N, Sanz A, Nogales A, Verdejo R, Lopez-Manchado MA, Ezquerra TA (2012) Deformation mechanisms in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by synchrotron X-ray scattering. Soft Matter 8:8990–8997

    Article  CAS  Google Scholar 

  15. Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831

    Article  CAS  Google Scholar 

  16. Bitinis N, Verdejo R, Maya EM, Espuche E, Cassagnau P, Lopez-Manchado MA (2012) Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos Sci Technol 72:305–313

    Article  CAS  Google Scholar 

  17. Blümm E, Owen AJ (1995) Miscibility, crystallization and melting of poly (3-hydroxybutyrate)/poly (l-lactide) blends. Polymer 36:4077–4081

    Article  Google Scholar 

  18. Botlhoko OJ, Ramontja J, Ray SS (2017) Thermally shocked graphene oxide-containing biocomposite for thermal management applications RSC. Advances 7:33751–33756

    CAS  Google Scholar 

  19. Cabedo L, Feijoo JL, Villanueva MP, Lagarón JM, Giménez E (2006) Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol Symposia 233:191–197

    Article  CAS  Google Scholar 

  20. Can E, Udenir G, Kanneci AI, Kose G, Bucak S (2011) Investigation of PLLA/PCL blends and paclitaxel release profiles. AAPS Pharmscitech 12:1442–1453

    Article  CAS  Google Scholar 

  21. Carbonell-Verdu A, Garcia-Garcia D, Dominici F, Torre L, Sanchez-Nacher L, Balart R (2017) PLA films with improved flexibility properties by using maleinized cottonseed oil. Eur Polym J 91:248–259

    Article  CAS  Google Scholar 

  22. Chavalitpanya K, Phattanarudee S (2013) Poly (lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia 34:542–548

    Article  CAS  Google Scholar 

  23. Chen G-X, Kim H-S, Kim E-S, Yoon J-S (2005) Compatibilization-like effect of reactive organoclay on the poly (l-lactide)/poly (butylene succinate) blends. Polymer 46:11829–11836

    Article  CAS  Google Scholar 

  24. Chen Y, Yuan D, Xu C (2014) Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. ACS Appl Mater Interfaces 6:3811–3816

    Article  CAS  Google Scholar 

  25. Cheng Y, Deng S, Chen P, Ruan R (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4:259–264

    Article  Google Scholar 

  26. Chiu H-T, Huang S-Y, Chen Y-F, Kuo M-T, Chiang T-Y, Chang C-Y, Wang Y-H (2013) Heat treatment effects on the mechanical properties and morphologies of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends. Int J Polym Sci 2013:1–11

    Article  CAS  Google Scholar 

  27. Cohn D, Salomon AH (2005) Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials 26:2297–2305

    Article  CAS  Google Scholar 

  28. Dil EJ, Favis BD (2015) Localization of micro-and nano-silica particles in heterophase poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends. Polymer 76:295–306

    Article  CAS  Google Scholar 

  29. Feng L, Bian X, Cui Y, Chen Z, Li G, Chen X (2013) Flexibility improvement of poly (l‐lactide) by reactive blending with poly (ether urethane) containing poly (ethylene glycol) blocks. Macromol Chem Phys 214:824–834

    Article  CAS  Google Scholar 

  30. Feng L, Bian X, Li G, Chen Z, Chen X (2016) Compatibility, mechanical properties and stability of blends of polylactide and polyurethane based on poly (ethylene glycol)-b-polylactide copolymers by chain extension with diisocyanate. Polym Degrad Stab 125:148–155

    Article  CAS  Google Scholar 

  31. Ferri JM, Garcia-Garcia D, Sánchez-Nacher L, Fenollar O, Balart R (2016) The effect of maleinized linseed oil (MLO) on mechanical performance of poly (lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydr Polym 147:60–68

    Article  CAS  Google Scholar 

  32. Ferri JM, Garcia‐Garcia D, Montanes N, Fenollar O, Balart R (2017) The effect of maleinized linseed oil as biobased plasticizer in poly (lactic acid)‐based formulations. Polym Int 66:882–891

    Article  CAS  Google Scholar 

  33. Fortunati E, Puglia D, Iannoni A, Terenzi A, Kenny JM, Torre L (2017) Processing conditions, thermal and mechanical responses of stretchable poly (lactic acid)/poly (butylene succinate) films. Materials 10:809

    Article  CAS  Google Scholar 

  34. Garcia-Campo MJ, Quiles-Carrillo L, Masia J, Reig-Pérez MJ, Montanes N, Balart R (2017) Environmentally friendly compatibilizers from soybean oil for ternary blends of poly (lactic acid)-PLA, poly (ε-caprolactone)-PCL and poly (3-hydroxybutyrate)-PHB. Materials 10:1339

    Article  CAS  Google Scholar 

  35. Han J-J, Huang H-X (2011) Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 120:3217–3223

    Article  CAS  Google Scholar 

  36. Hassouna F, Raquez J-M, Addiego F, Dubois P, Toniazzo V, Ruch D (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly (ethylene glycol)(PEG) via reactive extrusion. Euro Polym J 47:2134–2144

    Article  CAS  Google Scholar 

  37. Hassouna F, Raquez J-M, Addiego F, Toniazzo V, Dubois P, Ruch D (2012) New development on plasticized poly (lactide): chemical grafting of citrate on PLA by reactive extrusion. Euro Polym J 48:404–415

    Article  CAS  Google Scholar 

  38. Hongdilokkul P, Keeratipinit K, Chawthai S, Hararak B, Seadan M, Suttiruengwong S (2015) A study on properties of PLA/PBAT from blown film process. IOP Conf Ser Mater Sci Eng 87:012112

    Article  CAS  Google Scholar 

  39. Hu Y, Daoud WA, Cheuk KKL, Lin CSK (2016) Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: focus on poly (lactic acid). Materials 9:133

    Article  CAS  Google Scholar 

  40. Imre B, Bedő D, Domján A, Schön P, Vancso GJ, Pukánszky B (2013) Structure, properties and interfacial interactions in poly (lactic acid)/polyurethane blends prepared by reactive processing European Polymer Journal 49:3104–3113

    Article  CAS  Google Scholar 

  41. Juntuek P, Ruksakulpiwat C, Chumsamrong P, Ruksakulpiwat Y (2012) Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends. J Appl Polym Sci 125:745–754

    Article  CAS  Google Scholar 

  42. Krishnan S, Pandey P, Mohanty S, Nayak SK (2016) Toughening of polylactic acid: an overview of research progress. Polym-Plast Technol Eng 55:1623–1652

    Article  CAS  Google Scholar 

  43. Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415

    Article  CAS  Google Scholar 

  44. Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly (lactic acid). J Appl Polym Sci 66:1507–1513

    Google Scholar 

  45. Le Bolay N, Lamure A, Leis NG, Subhani A (2012) How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer-co-grinding enhances use properties of renewable PLA-starch composites. Chem Eng Process 56:1–9

    Article  CAS  Google Scholar 

  46. Lee C, Hong S (2013) An overview of the synthesis and synthetic mechanism of poly (lactic acid). Modern Chem Appl 2:144

    Google Scholar 

  47. Li H, Huneault MA (2011) Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J Appl Polym Sci 119:2439–2448

    Article  CAS  Google Scholar 

  48. Martin O, Averous L (2001) Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  49. Mathurosemontri S, Auwongsuwan P, Nagai S, Hamada H (2014) The effect of injection speed on morphology and mechanical properties of polyoxymethylene/poly (lactic acid) blends. Energy Procedia 56:57–64

    Article  CAS  Google Scholar 

  50. Matta AK, Rao RRU, Suman KNS, Rambabu V (2014) Preparation and characterization of biodegradable PLA/PCL polymeric blends Procedia. Mater Sci 6:1266–1270

    CAS  Google Scholar 

  51. Mauck SC et al (2016) Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer. Macromolecules 49:1605–1615

    Article  CAS  Google Scholar 

  52. Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282

    Article  CAS  Google Scholar 

  53. Muller J, González-Martínez C, Chiralt A (2017) Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials 10:952

    Article  CAS  Google Scholar 

  54. Notta-Cuvier D et al. (2014) Tailoring polylactide (PLA) properties for automotive applications: effect of addition of designed additives on main mechanical properties. Polym Testing 36:1–9

    Article  CAS  Google Scholar 

  55. Odent J et al (2015) Mechanistic insights on nanosilica self-networking inducing ultra-toughness of rubber-modified polylactide-based materials. Nanocomposites 1:113–125

    Article  CAS  Google Scholar 

  56. Ohkoshi I, Abe H, Doi Y (2000) Miscibility and solid-state structures for blends of poly [(S)-lactide] with atactic poly [(R, S)-3-hydroxybutyrate]. Polymer 41:5985–5992

    Article  CAS  Google Scholar 

  57. Ojijo V, Sinha Ray S, Sadiku R (2012) Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly [(butylene succinate)-co-adipate] blend composites. ACS Appl Mater Interfaces 4:2395–2405

    Article  CAS  Google Scholar 

  58. Ostafinska A, Fortelny I, Nevoralova M, Hodan J, Kredatusova J, Slouf M (2015) Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv 5:98971–98982

    Article  CAS  Google Scholar 

  59. Oyama HT (2009) Super-tough poly (lactic acid) materials: Reactive blending with ethylene copolymer. Polymer 50:747–751

    Article  CAS  Google Scholar 

  60. Patrício T, Bártolo P (2013) Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Eng 59:292–297

    Article  CAS  Google Scholar 

  61. Patrício T, Glória A, Bártolo P (2013) Mechanical and biological behaviour of PCL and PCL/PLA scaffolds for tissue engineering applications. Chem Eng 32

    Google Scholar 

  62. Pivsa-Art S, Kord-Sa-Ard J, Pivsa-Art W, Wongpajan R, Narongchai O, Pavasupree S, Hamada H (2016) Effect of compatibilizer on PLA/PP blend for injection molding. Energy Procedia 89:353–360

    Article  CAS  Google Scholar 

  63. Pivsa-Art S, Phansroy N, Thodsaratpiyakul W, Sukkaew C, Pivsa-Art W, Lintong S, Dedgheng T (2014) Preparation of biodegradable polymer copolyesteramides from L-lactic acid oligomers and polyamide monomers. Energy Procedia 56:648–658

    Article  CAS  Google Scholar 

  64. Pivsa-Art S, Thumsorn S, Pavasupree S, Narongchai O, Pivsa-Art W, Yamane H, Ohara H (2013a) Effect of Additive on Crystallization and Mechanical Properties of Polymer Blends of Poly (lactic acid) and Poly [(butylene succinate)-co-adipate]. Energy Procedia 34:563–571

    Article  CAS  Google Scholar 

  65. Pivsa-Art W, Chaiyasat A, Pivsa-Art S, Yamane H, Ohara H (2013b) Preparation of polymer blends between poly (lactic acid) and poly (butylene adipate-co-terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia 34:549–554

    Article  CAS  Google Scholar 

  66. Ploypetchara N, Suppakul P, Atong D, Pechyen C (2014) Blend of polypropylene/poly (lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedia 56:201–210

    Article  CAS  Google Scholar 

  67. Ramos M, Jiménez A, Peltzer M, Garrigós MC (2014) Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chem 162:149–155

    Article  CAS  Google Scholar 

  68. Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol 57:261–269

    Article  CAS  Google Scholar 

  69. Rosli NA, Ahmad I, Anuar FH, Abdullah I (2016) Mechanical and thermal properties of natural rubber-modified poly (lactic acid) compatibilized with telechelic liquid natural rubber. Polym Testing 54:196–202

    Article  CAS  Google Scholar 

  70. Shahlari M, Lee S (2012) Mechanical and morphological properties of poly (butylene adipate‐co‐terephthalate) and poly (lactic acid) blended with organically modified silicate layers. Polym Eng Sci 52:1420–1428

    Article  CAS  Google Scholar 

  71. Shin BY, Jang SH, Kim BS (2011) Thermal, morphological, and mechanical properties of biobased and biodegradable blends of poly (lactic acid) and chemically modified thermoplastic starch. Polym Eng Sci 51:826–834

    Article  CAS  Google Scholar 

  72. Signori F, Coltelli M-B, Bronco S (2009) Thermal degradation of poly (lactic acid)(PLA) and poly (butylene adipate-co-terephthalate)(PBAT) and their blends upon melt processing. Polym Degrad Stab 94:74–82

    Article  CAS  Google Scholar 

  73. Soares FC, Yamashita F, Mueller CMO, Pires ATN (2013) Thermoplastic starch/poly (lactic acid) sheets coated with cross-linked chitosan. Polym Testing 32:94–98

    Article  CAS  Google Scholar 

  74. Sookprasert P, Hinchiranan N (2015) Preparation of natural rubber‐graft‐poly (lactic acid) used as a compatibilizer for poly (lactic acid)/NR blends. Macromol Symp 354:125–130

    Article  CAS  Google Scholar 

  75. Spinella S, Samuel C, Raquez J-M, McCallum SA, Gross R, Dubois P (2016) Green and efficient synthesis of dispersible cellulose nanocrystals in biobased polyesters for engineering applications. ACS Sustain Chem Eng 4:2517–2527

    Article  CAS  Google Scholar 

  76. Todo M, Park S-D, Takayama T, Arakawa K (2007) Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Eng Fract Mech 74:1872–1883

    Article  Google Scholar 

  77. Torres A et al. (2017) Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. Euro Polym J 89:195–210

    Article  CAS  Google Scholar 

  78. Urquijo J, Guerrica‐Echevarría G, Eguiazábal JI (2015) Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. J Appl Polym Sci 132

    Article  CAS  Google Scholar 

  79. Valerio O, Misra M, Mohanty AK (2017a) Statistical design of sustainable thermoplastic blends of poly (glycerol succinate-co-maleate)(PGSMA), poly (lactic acid)(PLA) and poly (butylene succinate)(PBS). Polym Testing 65:420–428

    Article  CAS  Google Scholar 

  80. Valerio O, Misra M, Mohanty AK (2017b) Sustainable biobased blends of poly (lactic acid)(PLA) and poly (glycerol succinate-co-maleate)(PGSMA) with balanced performance prepared by dynamic vulcanization. RSC Adv 7:38594–38603

    Article  CAS  Google Scholar 

  81. Valerio O, Pin JM, Misra M, Mohanty AK (2016) Synthesis of glycerol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion. ACS Omega 1:1284–1295

    Article  CAS  Google Scholar 

  82. Wachirahuttapong S, Thongpin C, Sombatsompop N (2016) Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia 89:198–206

    Article  CAS  Google Scholar 

  83. Wang L-F, Rhim J-W, Hong S-I (2016) Preparation of poly (lactide)/poly (butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT-Food Sci Technol 68:454–461

    Article  CAS  Google Scholar 

  84. Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z (2013) Biodegradation behavior of poly (butylene adipate-co-terephthalate)(PBAT), poly (lactic acid)(PLA), and their blend under soil conditions. Polym Testing 32:918–926

    Article  CAS  Google Scholar 

  85. Wokadala OC, Emmambux NM, Ray SS (2014) Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch. Carbohyd Polym 112:216–224

    Article  CAS  Google Scholar 

  86. Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in poly (ε-caprolactone)/polylactide blend. Biomacromolecules 10:417–424

    Article  CAS  Google Scholar 

  87. Xiu H et al. (2014) Improving impact toughness of polylactide/poly (ether) urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles. Polymer 55:1593–1600

    Article  CAS  Google Scholar 

  88. Xu C, Yuan D, Fu L, Chen Y (2014) Physical blend of PLA/NR with co-continuous phase structure: preparation, rheology property, mechanical properties and morphology. Polym Testing 37:94–101

    Article  CAS  Google Scholar 

  89. Yeh J-T, Tsou C-H, Huang C-Y, Chen K-N, Wu C-S, Chai W-L (2010) Compatible and crystallization properties of poly (lactic acid)/poly (butylene adipate‐co‐terephthalate) blends. J Appl Polym Sci 116:680–687

    Google Scholar 

  90. Yu F, Huang H-X (2015) Simultaneously toughening and reinforcing poly (lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polym Testing 45:107–113

    Article  CAS  Google Scholar 

  91. Yuan D, Chen K, Xu C, Chen Z, Chen Y (2014) Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems. Carbohyd Polym 113:438–445

    Article  CAS  Google Scholar 

  92. Yuan D, Chen Z, Chen K, Mou W, Chen Y (2016) Phenolic resin-induced dynamically vulcanized polylactide/natural rubber blends. Polym-Plast Technol Eng 55:1115–1123

    Article  CAS  Google Scholar 

  93. Zeng C, Zhang N-W, Ren J (2012) Synthesis and properties of bio‐based thermoplastic polyurethane based on poly (L‐lactic acid) copolymer polydiol. J Appl Polym Sci 125:2564–2576

    Article  CAS  Google Scholar 

  94. Zeng J-B, Li K-A, Du A-K (2015) Compatibilization strategies in poly (lactic acid)-based blends RSC. Advances 5:32546–32565

    Google Scholar 

  95. Zeng J-B, Li Y-D, Li W-D, Yang K-K, Wang X-L, Wang Y-Z (2009) Synthesis and properties of poly (ester urethane) s consisting of poly (L-lactic acid) and poly (ethylene succinate) segments. Industrial Eng Chem Res 48:1706–1711

    Article  CAS  Google Scholar 

  96. Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79

    Article  CAS  Google Scholar 

  97. Zhang N, Wang Q, Ren J, Wang L (2009a) Preparation and properties of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci 44:250–256

    Article  CAS  Google Scholar 

  98. Zhang W, Chen L, Zhang Y (2009) Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer 50:1311–1315

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Rotimi Sadiku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mokhena, T.C., Mochane, M.J., Sadiku, E.R., Agboola, O., John, M.J. (2019). Opportunities for PLA and Its Blends in Various Applications. In: Gnanasekaran, D. (eds) Green Biopolymers and their Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8063-1_3

Download citation

Publish with us

Policies and ethics