Skip to main content

Biopolymer Composites and Bionanocomposites for Energy Applications

  • Chapter
  • First Online:
Green Biopolymers and their Nanocomposites

Abstract

An alternative and/or improved material for the energy sector is of major concern due to the advancement in the sector and the hazardous environmental impact of the current materials in use. Weight is also an issue when it comes to materials for energy generation, conversion, and storage. Bio-polymeric materials are currently being considered as an alternative option due to the inherent properties such as high strength-to-weight ratio, biodegradability, renewability, biocompatibility and cost-effectiveness. Based on these properties and the potentials of biopolymers, the composite materials are considered viable. The main focus of this chapter is on energy applications of biopolymers. The chapter also briefly explains the types, areas of application, properties and the reasons for the selection of biopolymers in the energy, biomedical and packaging sector. Finally, the study presents the future trend of biopolymers for energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdellaoui H, Bouhfid R, El Kacem Qaiss A (2017) Preparation of bionanocomposites and bionanomaterials from agricultural wastes. In: Jawaid M, Boufi S, Abdul Khalil HPS (eds) Cellulose-reinforced nanofibre composites. Woodhead Publishing, pp 341–371

    Google Scholar 

  2. Abdelrazek EM, Hezma AM, El-Khodary A, Elzayat AM (2016) Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt J Basic Appl Sci 3:10–15

    Article  Google Scholar 

  3. Abdo H, Elzatahry A, Alharbi H, Khalil K (2017) Electrical conductivity behavior of biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 13–25

    Google Scholar 

  4. Abhilash M, Thomas D (2017) Biopolymers for biocomposites and chemical sensor applications. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 405–435

    Google Scholar 

  5. Adeniyi A, Agboola O, Sadiku RE, Durowoju M, Olubambi P, Reddy AB, Ibrahim ID, Kupolati WK (2016) Thermoplastic-thermoset nanostructured polymer blends. In: Thomas S, Chandran S, Shanks R (eds) Nanostructured polymer blends and composites. Elsevier Inc, USA

    Google Scholar 

  6. Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36

    Article  CAS  Google Scholar 

  7. Agwuncha S, Sadiku E, Ibrahim ID, Aderibigbe B, Owonubi S, Agboola O, Reddy AB, Bandla M, Varaprasad K, Bayode B (2017) Poly (lactic acid) biopolymer composites and nanocomposites for biomedicals and biopackaging applications. Handbook of composites from renewable materials, nanocomposites: advanced applications, vol 8, p 135

    Chapter  Google Scholar 

  8. An S, Ma X (2017) Properties and structure of poly (3-hydroxybutyrate-co-4-hydroxybutyrate)/wood fiber biodegradable composites modified with maleic anhydride. Ind Crops Prod 109:882–888

    Article  CAS  Google Scholar 

  9. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol 3:113–126

    Article  CAS  Google Scholar 

  10. Arora A, Padua G (2010) Nanocomposites in food packaging. J Food Sci 75(1):R43–R49

    Article  CAS  Google Scholar 

  11. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353

    Article  CAS  Google Scholar 

  12. Benbettaïeb N, Kurek M, Bornaz S, Debeaufort F (2014) Barrier, structural and mechanical properties of bovine gelatin–chitosan blend films related to biopolymer interactions. J Sci Food Agric 94:2409–2419

    Article  Google Scholar 

  13. Bettinger CJ, Bao Z (2010) Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater 22:651–655

    Article  CAS  Google Scholar 

  14. Bhakat D, Barik P, Bhattacharjee A (2018) Electrical conductivity behavior of Gum Arabic biopolymer-Fe3O4 nanocomposites. J Phys Chem Solids 112:73–79

    Article  CAS  Google Scholar 

  15. Bindhu B, Renisha R, Roberts L, Varghese T (2018) Boron Nitride reinforced polylactic acid composites film for packaging: preparation and properties. Polym Testing 66:172–177

    Article  CAS  Google Scholar 

  16. Bojanić V (2010) Optimization of cellulose acrylate and grafted 4-vinylpyridine and 1-vinylimidazole synthesis. Hemijska industrija 64:529–535

    Article  Google Scholar 

  17. Brandau DT, Jones LS, Wiethoff CM, Rexroad J, Middaugh CR (2003) Thermal stability of vaccines. J Pharm Sci 92:218–231

    Article  CAS  Google Scholar 

  18. Bundela H, Bajpai A (2008) Designing of hydroxyapatite-gelatin based porous matrix as bone substitute: correlation with biocompatibility aspects. Express Polym Lett 2:201–213

    Article  CAS  Google Scholar 

  19. Cypes SH, Saltzman WM, Giannelis EP (2003) Organosilicate-polymer drug delivery systems: controlled release and enhanced mechanical properties. J Controlled Release 90:163–169

    Article  CAS  Google Scholar 

  20. Cyprych K, Sznitko L, Mysliwiec J (2014) Starch: application of biopolymer in random lasing. Org Electron 15:2218–2222

    Article  CAS  Google Scholar 

  21. Dai L (2004) Conducting polymers. In: Dai L (ed) Intelligent macromolecules for smart devices: from materials synthesis to device applications. Springer Science & Business Media, London, pp 41–80

    Google Scholar 

  22. Das T, Prusty S (2017) Biopolymer composites in field-effect transistors. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 219–229

    Google Scholar 

  23. Davidenko N, Cameron R, Best S (2018) Natural biopolymers for biomedical applications. In: Reference module in biomedical sciences. Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.11026-8

    Chapter  Google Scholar 

  24. De Léis CM, Nogueira AR, Kulay L, Tadini CC (2017) Environmental and energy analysis of biopolymer film based on cassava starch in Brazil. J Clean Prod 143:76–89

    Article  Google Scholar 

  25. Decher G, Schlenoff JB (2006) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley

    Google Scholar 

  26. Deshmukh K, Basheer Ahamed M, Deshmukh RR, Khadheer Pasha SK, Bhagat PR, Chidambaram K (2017) Biopolymer composites with high dielectric performance: interface engineering. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 27–128

    Google Scholar 

  27. Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V (2004) Drug-eluting bioabsorbable magnesium stent. J Intervent Cardiol 17:391–395

    Article  Google Scholar 

  28. Dos Santos RM, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714

    Article  Google Scholar 

  29. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392

    Article  CAS  Google Scholar 

  30. Farahnaky A, Dadfar SMM, Shahbazi M (2014) Physical and mechanical properties of gelatin–clay nanocomposite. J Food Eng 122:78–83

    Article  CAS  Google Scholar 

  31. Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng, C 23:763–772

    Article  Google Scholar 

  32. Fritsch A, Hellmich C, Dormieux L (2009) Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol 260:230–252

    Article  CAS  Google Scholar 

  33. Garland A (2004) Nanotechnology in plastics packaging: commercial applications in nanotechnology. Pira International Limited, UK

    Google Scholar 

  34. Guo M, Trzcinski A, Stuckey D, Murphy R (2011) Anaerobic digestion of starch–polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment. Biores Technol 102:11137–11146

    Article  CAS  Google Scholar 

  35. Han JH (2003) Antimicrobial food packaging. Novel food Packag Tech 8:50–70

    Article  Google Scholar 

  36. Haque S, Shah MS, Rahman M, Mohiuddin M (2017) Biopolymer composites in light emitting diodes. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 277–310

    Google Scholar 

  37. Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769

    Article  CAS  Google Scholar 

  38. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980

    Google Scholar 

  39. Ibrahim ID, Jamiru T, Sadiku ER, Kupolati WK, Agwuncha SC, Ekundayo G (2016) Mechanical properties of sisal fibre-reinforced polymer composites: a review. Compos Interfaces 23:15–36

    Article  Google Scholar 

  40. Ibrahim ID, Jamiru T, Sadiku ER, Kupolati WK, Agwuncha SC (2016a) Impact of surface modification and nanoparticle on sisal fiber reinforced polypropylene nanocomposites. J Nanotechnol 2016. http://dx.doi.org/10.1155/2016/4235975

  41. Ibrahim ID, Jamiru T, Sadiku RE, Kupolati WK, Agwuncha SC (2017a) Dependency of the mechanical properties of sisal fiber reinforced recycled polypropylene composites on fiber surface treatment, fiber content and nanoclay. J Polym Environ 25:427–434

    Article  CAS  Google Scholar 

  42. Ibrahim ID, Sadiku E, Jamiru T, Hamam A, Kupolati WK (2017b) Applications of polymers in the biomedical field. Curr Trends Biomed Eng Biosci 4(5). https://juniperpublishers.com/ctbeb/CTBEB.MS.ID.555650.php

  43. Imran M, Revol-Junelles A-M, Martyn A, Tehrany EA, Jacquot M, Linder M, Desobry S (2010) Active food packaging evolution: transformation from micro-to nanotechnology. Crit Rev Food Sci Nutr 50:799–821

    Article  CAS  Google Scholar 

  44. Kakran M, Li L (2012) Carbon nanomaterials for drug delivery. Key Engineering Materials. Trans Tech Publications, pp 76–80

    Google Scholar 

  45. Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S (2017) Environmental applications of chitosan and cellulosic biopolymers: a comprehensive outlook. Biores Technol 242:295–303

    Article  CAS  Google Scholar 

  46. Keller SS, Gammelgaard L, Jensen MP, Schmid S, Davis ZJ, Boisen A (2011) Deposition of biopolymer films on micromechanical sensors. Microelectron Eng 88:2297–2299

    Article  CAS  Google Scholar 

  47. Khalil AM, Hassan ML, Ward AA (2017) Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohyd Polym 157:503–511

    Article  CAS  Google Scholar 

  48. Kim J (2017) Multifunctional smart biopolymer composites as actuators. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 311–331

    Google Scholar 

  49. Kisku SK, Sarkar N, Dash S, Swain SK (2014) Preparation of starch/PVA/CaCO3 nanobiocomposite films: study of fire retardant, thermal resistant, gas barrier and biodegradable properties. Polymer-Plast Technol Eng 53:1664–1670

    Article  CAS  Google Scholar 

  50. Klotzbach T, Watt M, Ansari Y, Minteer SD (2006) Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization. J Membr Sci 282:276–283

    Article  CAS  Google Scholar 

  51. Klotzbach TL, Watt M, Ansari Y, Minteer SD (2008) Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion® polymers. J Membr Sci 311:81–88

    Article  CAS  Google Scholar 

  52. Korol J, Burchart-Korol D, Pichlak M (2016) Expansion of environmental impact assessment for eco-efficiency evaluation of biocomposites for industrial application. J Clean Prod 113:144–152

    Article  CAS  Google Scholar 

  53. Krebsz M, Pasinszki T, Tung TT, Losic D (2017) Development of vapor/gas sensors from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 385–403

    Google Scholar 

  54. Li Z, Gu X, Lou S, Zheng Y (2008) The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29:1329–1344

    Article  CAS  Google Scholar 

  55. Lin L, Fu F, Qin L (2017) Cellulose fiber-based high strength composites. In: Fan M, Fu F (eds) Advanced high strength natural fibre composites in construction. Elsevier, pp 179–203

    Google Scholar 

  56. Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72:R39–R55

    Article  CAS  Google Scholar 

  57. Meier M (2014) Sustainable polymers: reduced environmental impact, renewable raw materials and catalysis. Green Chem 16:1672

    Article  CAS  Google Scholar 

  58. Mendes RG, Bachmatiuk A, Büchner B, Cuniberti G, Rümmeli MH (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem, B 1:401–428

    Article  CAS  Google Scholar 

  59. Mendes RG, Koch B, Bachmatiuk A, Ma X, Sanchez S, Damm C, Schmidt OG, Gemming T, Eckert J, Rümmeli MH (2015) A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. Journal Mater Chem B 3:2522–2529

    Article  CAS  Google Scholar 

  60. Mohanty F, Swain SK (2017) Bionanocomposites for food packaging applications. In: Oprea AE, Grumezescu AM (eds) Nanotechnology applications in food. Academic Press, pp 363–379

    Google Scholar 

  61. Mohiuddin M, Kumar B, Haque S (2017) biopolymer composites in photovoltaics and photodetectors. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 459–486

    Google Scholar 

  62. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  63. Muthumeenal A, Pethaiah SS, Nagendran A (2017) Biopolymer composites in fuel cells. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 185–217

    Google Scholar 

  64. Nagasawa S, Yajima D, Torimitsu S, Abe H, Iwase H (2014) Fatal water intoxication during olanzapine treatment: a case report. Leg Med 16:89–91

    Article  Google Scholar 

  65. Okonkwo PC, Collins E, Okonkwo E (2017) Application of biopolymer composites in super capacitor. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 487–503

    Google Scholar 

  66. Oksman K, Mathew AP, Sain M (2009) Novel bionanocomposites: processing, properties and potential applications. Plast Rubber Compos 38:396–405

    Article  CAS  Google Scholar 

  67. Oliveira AS, Alcântara ACS, Pergher SBC (2017) Bionanocomposite systems based on montmorillonite and biopolymers for the controlled release of olanzapine. Mater Sci Eng, C 75:1250–1258

    Article  CAS  Google Scholar 

  68. Park S-B, Lih E, Park K-S, Joung YK, Han DK (2017) Biopolymer-based functional composites for medical applications. Prog Polym Sci 68:77–105

    Article  CAS  Google Scholar 

  69. Pattanashetti NA, Heggannavar GB, Kariduraganavar MY (2017) Smart biopolymers and their biomedical applications. Procedia Manufact 12:263–279

    Article  Google Scholar 

  70. Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198

    Article  CAS  Google Scholar 

  71. Pavlović M, Ćosović V, Pavlović M, Bojanić V, Nikolić N, Aleksić R (2012) Electrical conductivity of lignocellulose composites loaded with electrodeposited copper powders. Part II. Influence of particle size on percolation threshold. Int J Electrochem Sci 7:8883–8893

    Google Scholar 

  72. Pavlović M, Pavlović M, Panić V, Talijan N, Vasiljević L, Tomić M (2012) Electrical conductivity of lignocellulose composites loaded with electrodeposited copper powders. Part III. Influence of particle morphology on appearance of electrical conductive layers. Int J Electrochem Sci 7:8894–8904

    Google Scholar 

  73. Persico P, Ambrogi V, Carfagna C, Cerruti P, Ferrocino I, Mauriello G (2009) Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym Eng Sci 49:1447–1455

    Article  CAS  Google Scholar 

  74. Pinto G, Maaroufi AK, Benavente R, Pereña JM (2011) Electrical conductivity of urea–formaldehyde–cellulose composites loaded with copper. Polym Compos 32:193–198

    Article  CAS  Google Scholar 

  75. Ponnamma D, Guo Q, Krupa I, Al-Maadeed MAS, Varughese K, Thomas S, Sadasivuni KK (2015) Graphene and graphitic derivative filled polymer composites as potential sensors. Phy Chem Chem Phy 17:3954–3981

    Article  CAS  Google Scholar 

  76. Ponnamma D, Sadasivuni K, Almaadeed M (2017) Introduction of biopolymer composites: what to do in electronics? In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 1–12

    Google Scholar 

  77. Ponnamma D, Sadasivuni KK, Wan C, Thomas S, Alma’adeed MA-A (2015) Flexible and stretchable electronic composites. Springer International Publishing, Switzerland

    Google Scholar 

  78. Prusty G, Swain SK (2013) Dispersion of multiwalled carbon nanotubes in polyacrylonitrile-co-starch copolymer matrix for enhancement of electrical, thermal, and gas barrier properties. Polym Compos 34:330–334

    Article  CAS  Google Scholar 

  79. Puiggalí J, Katsarava R (2017) Bionanocomposites. In: Jlassi K, Chehimi MM, Thomas S (eds) Clay-polymer nanocomposites. Elsevier, pp 239–272

    Google Scholar 

  80. Rajan M, Dharman G, Sumathra M (2017) Development of microwave absorbers from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 231–253

    Google Scholar 

  81. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st-century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  82. Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  CAS  Google Scholar 

  83. Rovera C, Cozzolino CA, Ghaani M, Morrone D, Olsson RT, Farris S (2018) Mechanical behavior of biopolymer composite coatings on plastic films by depth-sensing indentation—a nanoscale study. J Colloid Interface Sci 512:638–646

    Article  CAS  Google Scholar 

  84. Saini RK, Bajpai AK, Jain E (2018) Advances in bionanocomposites for biomedical applications. In: Shimpi NG (ed) Biodegradable and biocompatible polymer composites. Woodhead Publishing, pp 379–399

    Google Scholar 

  85. Sawant SN (2017) Development of biosensors from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 353–383

    Google Scholar 

  86. Singh R, Bhattacharya B, Rhee H-W, Singh PK (2015) Solid gellan gum polymer electrolyte for energy application. Int J Hydrogen Energy 40:9365–9372

    Article  CAS  Google Scholar 

  87. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  88. Slowing II, Trewyn BG, Giri S, Lin VY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Func Mater 17:1225–1236

    Article  CAS  Google Scholar 

  89. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  90. Sowjanya J, Singh J, Mohita T, Saravanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf, B 109:294–300

    Article  CAS  Google Scholar 

  91. Subramanian V, Varade D (2017) Thermoelectric properties of biopolymer composites. In: Biopolymer composites in electronics, pp 155–183

    Chapter  Google Scholar 

  92. Sun F, Zhou H, Lee J (2011) Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 7:3813–3828

    Article  CAS  Google Scholar 

  93. Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci 68:408–420

    Article  CAS  Google Scholar 

  94. Sznitko L, Szukalski A, Cyprych K, Karpinski P, Miniewicz A, Mysliwiec J (2013) Surface roughness induced random lasing in bio-polymeric dye doped film. Chem Phys Lett 576:31–34

    Article  CAS  Google Scholar 

  95. Thakur VK, Singha AS (2015) Surface modification of biopolymers. Wiley, pp 1–418

    Google Scholar 

  96. Vaghari H, Jafarizadeh-Malmiri H, Berenjian A, Anarjan N (2013) Recent advances in application of chitosan in fuel cells. Sustain Chem Process 1(1):16. https://doi.org/10.1186/2043-7129-1-16

    Article  CAS  Google Scholar 

  97. Vuong J, Hellmich C (2011) Bone fibrillogenesis and mineralization: quantitative analysis and implications for tissue elasticity. J Theor Biol 287:115–130

    Article  Google Scholar 

  98. Wan Y, Creber KA, Peppley B, Bui VT (2003) Ionic conductivity of chitosan membranes. Polymer 44:1057–1065

    Article  CAS  Google Scholar 

  99. Wawrzycka-Gorczyca I, Borowski P, Osypiuk-Tomasik J, Mazur L, Koziol AE (2007) Crystal structure of olanzapine and its solvates. Part 3. Two and three-component solvates with water, ethanol, butan-2-ol and dichloromethane. J Mol Struct 830:188–197

    Article  CAS  Google Scholar 

  100. Winey KI, Kashiwagi T, Mu M (2007) Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull 32:348–353

    Article  CAS  Google Scholar 

  101. Xiong R, Grant AM, Ma R, Zhang S, Tsukruk VV (2018) Naturally-derived biopolymer nanocomposites: interfacial design, properties and emerging applications. Mater Sci Eng, R 125:1–41

    Article  Google Scholar 

  102. Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040

    Article  CAS  Google Scholar 

  103. Xue Q (2004) The influence of particle shape and size on electric conductivity of metal–polymer composites. Eur Polym J 40:323–327

    Article  CAS  Google Scholar 

  104. Yam KL, Takhistov PT, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70(1):R1–R10

    Article  CAS  Google Scholar 

  105. Yatigala NS, Bajwa DS, Bajwa SG (2018) Compatibilization improves physico-mechanical properties of biodegradable biobased polymer composites. Compos A Appl Sci Manuf 107:315–325

    Article  CAS  Google Scholar 

  106. Zhu Z, Ye C, Fu W, Wu H (2016) Improvement in mechanical and thermal properties of polylactic acid biocomposites due to the addition of hybrid sisal fibers and diatomite particles. Int J Polym Anal Charact 21:365–377

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Tshwane University of Technology Pretoria for providing access to electronic materials used for compiling the chapter. Mr. I. D. Ibrahim and Mr. A. A. Eze would like to thank CSIR-IBS for financial support received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idowu David Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibrahim, I.D. et al. (2019). Biopolymer Composites and Bionanocomposites for Energy Applications. In: Gnanasekaran, D. (eds) Green Biopolymers and their Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8063-1_14

Download citation

Publish with us

Policies and ethics