Skip to main content

Synthesis of Polymeric Biomaterial for Medicine and Surgery

  • Chapter
  • First Online:
Green Biopolymers and their Nanocomposites

Abstract

New polymer materials for medical applications are the reason for some successes recorded in medicine and surgery. Current research and development (R&D) efforts are geared toward the upgrading of techniques and devices for more compelling and productive processing and application of biomaterials in medicine and surgery. The application of outcomes of such R&D efforts has led to recorded successes in the treatment of nagging health-related issues, wherein polymeric biomaterials are technically deployed in today’s healthcare technology. For wound healing, for instance, three-dimensional (3D) scaffolds may be designed to have a wide scope of properties which incorporate suitable surface science, porosity with pore measurements from large-scale to submicron and interconnectivity systems, which enable cell-to-cell communication and migration, cell multiplication, and separation, lastly to keep up the biocompatibility and basic honesty all through the tissue recovery process. Fabrication procedures of biocompatible 3D scaffolds and hydrogels with suitable architectures may be achieved via the conventional method of synthesis or rapid prototyping. On account of hydrogels, chemical cross-linking prompts the development of permanent junction-type networks, while physical cross-linking permits the arrangement of transient junction-type networks. These possibilities give credences to the relentless efforts of R&D in the synthesis of more stable polymeric biomaterials for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi D (2006) Introduction to biomaterials. World Scientific, Tsinghua University Press

    Google Scholar 

  2. Hoffman AS (2002) Adv Drug Deliv Rev 43:3

    Google Scholar 

  3. Eljarrat-Binstock E, Orucov F, Frucht-Pery J, Pe’er J, Domb AJ (2008) J Ocul Pharmacol Ther 24:344

    Google Scholar 

  4. Liu KH, Liu TY, Chen SY, Liu DM (2008) Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater 4:1038–1045

    Article  CAS  Google Scholar 

  5. Liu W, Griffith M, Li F (2008) J Mater Sci Mater Med 19:3365

    Article  CAS  Google Scholar 

  6. Yang F, Wang Y, Zhang Z, Hsu B, Jabs EW, Elisseeff JH (2008) Bone 43:55

    Article  CAS  Google Scholar 

  7. Khan F, Tare RS, Oreffo ROC, Bradley M (2009) Angew Chem Int Ed 48:978

    Google Scholar 

  8. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC (2007) Nat Mater 6:997

    Google Scholar 

  9. Hollister SJ (2005) Nat Mater 4:518

    Google Scholar 

  10. Curtis ASG, Wilkinson CDW (1997) Biomaterials 18:1573

    Article  CAS  Google Scholar 

  11. Balowski JJ, Wang Y, Allbritton NL (2013) Adv Mater 25:4107

    Article  CAS  Google Scholar 

  12. Liebschner M, Wettergreen M (2012) Methods Mol Biol 868:71

    Google Scholar 

  13. Lu Y, Chen S (2012) Methods Mol Biol 868:289

    Article  CAS  Google Scholar 

  14. Revzin A, Tompkins RG, Toner M (2003) Langmuir 19:9855

    Article  CAS  Google Scholar 

  15. Yamato M, Konno C, Utsumi M, Kikuchi A, Okano T (2002) Biomaterials 23:561

    Article  CAS  Google Scholar 

  16. Karp JM, Yeo Y, Geng W, Cannizarro C, Yan K, Kohane DS, Vunjak-Novakovic G, Langer RS, Radisic M (2006) Biomaterials 27:4755

    Article  CAS  Google Scholar 

  17. Ishihata H, Tanaka M, Iwama N, Ara M, Shimonishi M, Nagamine M, Murakami N, Kanaya S, Nemoto E, Shimauchi H, Shimomura M (2010) J Biomech Sci Eng 5:252 (Special issue on Micro Nanobiotech for cells)

    Google Scholar 

  18. Sato T, Tanaka M, Yamamoto S, Ito E, Shimizu K, Igarashi Y, Shimomura M, Inokuchi J (2010) J Biomater Sci Polym Ed 21:1947

    Google Scholar 

  19. Shimomura M, Nishikawa T, Mochizuki A, Tanaka M (2001) JP 2001/157574

    Google Scholar 

  20. Tanaka M, Takayama A, Ito E, Sunami H, Yamamoto S, Shimomura M (2007) J Nanosci Nanotechnol 7:763

    Article  CAS  Google Scholar 

  21. Tsuruma A, Tanaka M, Yamamoto S, Shimomura M (2008) Colloids Surf A 313–314:536

    Article  CAS  Google Scholar 

  22. Yamamoto S, Tanaka M, Sunami H, Yamashita S, Morita Y, Shimomura M (2007) Langmuir 23:8114

    Article  CAS  Google Scholar 

  23. Zhao X, Shuguang Z (2007) Macromol Biosci 7:13

    Google Scholar 

  24. Dinca V, Kasotakis E, Catherine J, Mourka A, Ranella A, Ovsianikov A, Chichkov BN, Farsari M, Mitraki A, Fotakis C (2007) Nano Lett 8:538

    Google Scholar 

  25. Gazit E (2007) Chem Soc Rev 36:1263

    Google Scholar 

  26. Scanlon S, Aggeli A (2008) Nano Today 3:22

    Article  CAS  Google Scholar 

  27. Zhang S (2003) Mater Today 6:20

    Google Scholar 

  28. Gelain F, Bottai D, Vescovi A, Zhang S (2006) PLoS One 1:e119

    Article  CAS  Google Scholar 

  29. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Proc Natl Acad Sci U S A 99:9996

    Article  CAS  Google Scholar 

  30. Ellis-Behnke RG, Liang YX, You S-W, Tay DKC, Zhang S, So K-F, Schneider GE (2006) Proc Natl Acad Sci U S A 103:5054

    Google Scholar 

  31. Zhang S, Gelain F, Zhao X (2005) Semin Cancer Biol 15:413

    Article  Google Scholar 

  32. Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S (2000) Proc Natl Acad Sci U S A 97:6728

    Google Scholar 

  33. Nuttelman CR, Rice MA, Rydholm AE, Salinas CN, Shah DN, Anseth KS (2008) Prog Polym Sci 33:167

    Article  CAS  Google Scholar 

  34. Kim SY, Lee YM (1999) Drug release behavior of electrical responsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus. J Appl Polym Sci 74:1752–1761

    Article  CAS  Google Scholar 

  35. Kwon IC, Bae YH, Kim SW (1994) Heparin release from polymer complex. J Control Rel 30:155–159

    Article  CAS  Google Scholar 

  36. Liu Y, Servant A, Guy OJ, Al-Jamal KT, Williams PR (2012) Sens Actuators B: Chem 175:100–105

    Article  CAS  Google Scholar 

  37. Tomer R, Dimitrijevic D, Florence AT (1995) Electrically controlled release of macromolecules from cross-linked hyaluronic acid hydrogels. J Control Rel 33:405–413

    Article  CAS  Google Scholar 

  38. Shiga T, Kurauchi T (1990) Deformation of polyelectrolyte gels under the influence of electric field. J Appl Polym Sci 39:2305–2320

    Article  CAS  Google Scholar 

  39. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY, USA

    Google Scholar 

  40. Kim SJ, Shin SR, Lee JH, Lee SH, Kim SI (2003) Electrical response characterization of chitosan/polyacrylonitrile hydrogel in NaCl solutions. J Appl Polym Sci 90:91–96

    Article  CAS  Google Scholar 

  41. Xiang Y, Liu G, Zhang C, Liao J (2013) Sulfoacetic acid modifying poly(vinyl alcohol) hydrogel and its electroresponsive behavior under DC electric field. Smart Mater Struct 22:014009

    Article  CAS  Google Scholar 

  42. Amarasekara AS, Razzaq A, Bonham P (2013) Synthesis and characterization of all renewable resources based branched polyester: poly(2,5-furandicarboxylic acid-co-glycerol). ISRN Polym Sci 1–4

    Article  CAS  Google Scholar 

  43. Wilsens CHRM (2015) Exploring the application of 2,5-furandicarboxylic acid as a monomer in high performance polymers: synthesis, characterization and properties. Technishe Universiteit Eindhoven, p 3. https://doi.org/10.6100/ir783770

  44. De Jong E, Dam MA, Sipos L (2012) Furandicarboxylic acid (FDCA), a versatile building block for a very. In: Smith PB, Richard GA (eds) Biobased monomers, polymers, and materials. American Chemical Society, Washinton DC, pp 1–13

    Google Scholar 

  45. Gandini A (2011) Furan monomers and their polymers: synthesis, properties and applications, In: Biopolymers

    Google Scholar 

  46. Hong S, Min K-D, Nam B-U, Park OO (2016) High molecular weight bio furan-based copolyesters for food packaging applications: synthesis, characterization and solid-state polymerization. Green Chem 18(19):5142–5150

    Article  CAS  Google Scholar 

  47. Doi Y, Steinbüchel A (2002) Biopolymers, applications and commercial products—polyesters III. Wiley-VCH, Weinheim, Germany, p 410

    Google Scholar 

  48. Zeng C, Seino H, Ren J, Hatanaka K, Yoshie N (2013) Bio-based furan polymers with self-healing ability. Macromolecules 46(5):1794–1802

    Article  CAS  Google Scholar 

  49. Liu YL, Chuo T-W (2013) Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym Chem 4(7)

    Article  CAS  Google Scholar 

  50. Gomes M, Gandini A, Silvestre AJD, Reis B (2011) Synthesis and characterization of poly (2,5furan dicarboxylate)s based on a variety of diols. J Polym Sci, Part A: Polym Chem 49(17):3759–3768

    Article  CAS  Google Scholar 

  51. Gandini A, Coelho D, Gomes M, Reis B, Silvestre A (2009) Materials from renewable resources based on furan monomers and furan chemistry: work in progress. J Mater Chem

    Google Scholar 

  52. Zhou SB, Deng XM, Li XH, Jia WX, Liu L (2004) Synthesis and characterization of biodegradable low molecular weight aliphatic polyesters and their use in protein-delivery systems. J Appl Polym Sci 91:1848–1856. https://doi.org/10.1002/app.13385

    Article  CAS  Google Scholar 

  53. Duval C, Nouvel C, Six J-L (2014) Is bismuth subsalicylate an effective nontoxic catalyst for plga synthesis? J Polym Sci Part A. https://doi.org/10.1002/pola.27096

    Article  CAS  Google Scholar 

  54. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176

    Article  CAS  Google Scholar 

  55. Li J, Stayshich RM, Meyer TY (2011) Exploiting sequence to control the hydrolysis behavior of biodegradable plga copolymers. J Am Chem Soc 133:6910–6913

    Article  CAS  Google Scholar 

  56. Avgoustatis K (2005) Polylactic-co-glycolic acid (PLGA). In: Encyclopedia of biomaterials and biomedical engineering. Taylor & Francis, pp 1–11. https://doi.org/10.1081/e-ebbe-120013950

  57. Baino F (2011) Biomaterials and implants for orbital floor repair. Acta Biomater 7:3248–3266

    Article  CAS  Google Scholar 

  58. You Y, Lee SW, Youk JH, Min BM, Lee SJ, Park WH (2005) In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(L-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polym Degrad Stab 90:441–448

    Article  CAS  Google Scholar 

  59. You Y, Min BM, Lee SJ, Lee TS, Park WH (2005) In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). J Appl Polym Sci 95:193–200

    Article  CAS  Google Scholar 

  60. Avérous L, Pollet E (2012) Biodegradable polymers. In: Avérous L, Pollet E (eds) Environmental silicate nano-biocomposites. Green Energy and Tech., Springer, London. https://doi.org/10.1007/978-1-4471-4108-2_2

    Chapter  Google Scholar 

  61. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  62. Garlotta D (2002) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84

    Article  Google Scholar 

  63. Hartmann H (1998) High molecular weight polylactic acid polymers. In: Kaplan DL (ed) Biopolymers from renewable resources, 1st edn. Springer, Berlin, pp 367–411

    Chapter  Google Scholar 

  64. Mehta R, Kumar V, Bhunia H, Upahyay SN (2005) Synthesis of poly(lactic acid): a review. J Macromol Sci Polym Rev 45:325–349

    Article  CAS  Google Scholar 

  65. Sodergard A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163

    Article  CAS  Google Scholar 

  66. Averous L (2008) Polylactic acid: synthesis, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources (Chapter 21). Elsevier BV, Netherlands, pp 433–450

    Chapter  Google Scholar 

  67. Lee C, Hong S (2014) An overview of the synthesis and synthetic mechanism of poly (lactic acid). Mod Chem Appl 2:144. https://doi.org/10.4172/2329-6798.1000144

    Article  CAS  Google Scholar 

  68. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature‘s arts. J Mater Sci 35(2):261–270

    Article  CAS  Google Scholar 

  69. Khan F, Dahman Y (2012) Novel approach for the utilization of biocellulose nanofibres in polyurethane nanocomposites for potential applications in bone tissue implants. J Des Monomers Polym 15(1):1–29

    Article  CAS  Google Scholar 

  70. Sani A, Dahman Y (2010) Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods. J Chem Technol Biotechnol 85(2):151–164

    CAS  Google Scholar 

  71. Dahman Y (2009) Nanostructured Biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechnol 9(9):5105–5122

    Article  CAS  Google Scholar 

  72. Geyer U, Heinze TH, Stein A, Klemm D (1994) Formation, derivatization and applications of bacterial cellulose. Int J Biol Macromol 16(6):343–347

    Article  CAS  Google Scholar 

  73. Chao Y, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68(3):345–352

    Article  CAS  Google Scholar 

  74. Colvin JR, Leppard GG (1997) The biosynthesis of cellulose by Acetobacter xylinum and Acetobacter acetigenus. Can J Microbiol 23(6):701–709

    Article  Google Scholar 

  75. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107(2):576–583

    Article  CAS  Google Scholar 

  76. Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 20(5):1366–1371

    Article  CAS  Google Scholar 

  77. Dahman Y, Jayasuriya KE, Kalis M (2010) Potential of biocellulose nanofibers production from agricultural renewable resources: preliminary study. Appl Biochem Biotechnol 162(6):1647–1659

    Article  CAS  Google Scholar 

  78. Hong F, Qiu KY (2004) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Biotechnol Prog 20(3):1366–1371

    Google Scholar 

  79. Jung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, Kim YG, Son HJ (2010) Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Biores Technol 101(10):3602–3608

    Article  CAS  Google Scholar 

  80. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohyd Polym 76(2):333–335

    Article  CAS  Google Scholar 

  81. Noro N, Sugano Y, Shoda M (2004) Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl Microbiol Biotechnol 64(2):199–205

    Article  CAS  Google Scholar 

  82. Brown RM (1979) Biogenesis of natural polymer systems with special reference to cellulose assembly and deposition. In: Proceedings of the third Phillip Morris U.S.A. Operations Center, pp 52–123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nnamdi C. Iheaturu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iheaturu, N.C., Diwe, I.V., Banigo, A.T., Daramola, O.O., Sadiku, E.R. (2019). Synthesis of Polymeric Biomaterial for Medicine and Surgery. In: Gnanasekaran, D. (eds) Green Biopolymers and their Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8063-1_12

Download citation

Publish with us

Policies and ethics