Skip to main content

Polymeric Nanomaterials for Drug Delivery

  • Chapter
  • First Online:
Green Biopolymers and their Nanocomposites

Abstract

Drug delivery systems are used to deliver on target, diseases, ailments, and unhealthy body. In biomedical science, polymeric systems and nanomaterials play a significant role because they serve as carriers for sending therapeutic agents specifically into the proposed site of action, with predominant viability, and with no adverse or toxic effects. Nanoparticulate delivery systems are designed to efficiently control particle size, morphology, improve infiltration, elasticity, solubility, and discharge of therapeutically active agents so as to achieve the objective and explicit action at a foreordained rate and time. Furthermore, some plants grown in sub-Saharan Africa, and their extracts, are found to contain bioactive compounds for medicinal purposes. Several investigations have been done to ascertain the efficacy of the plant extracts for the purpose of healing. This chapter takes a look at polymeric drug delivery systems, their morphology, nanomaterials and particulates used for treatment, some plant extracts, mechanisms of drug delivery, and risks associated with their usage and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abou El-Nour KM, Eftaiha A, Al-Warthan A, Ammar RA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Article  CAS  Google Scholar 

  2. Adegboye MF, Akinpelu DA, Okoh A (2008) The bioactive and phytochemical properties of Garcinia kola (Heckel) seed extract on some pathogens. Afr J Biotechnol 7:3934–3938

    CAS  Google Scholar 

  3. Ahmad RS, Ali F, Hamid RS, Sara M (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed: Nanotechnol, Biol Med 3(2): 168–171

    Google Scholar 

  4. Akin-Osanaiya BC, Nok AJ, Ibrahim et al S (2013) Antimalarial effect of neem leaf and neem stem bark extracts on plasmodium berghei infected in the pathology and treatment of malaria. Int J Res Biochem Biophys 3(1):7–14

    Google Scholar 

  5. Amadioha AC, Obi VI (1998) Fungitoxic activity of extracts from Azadirachta indica and Xylopia aethiopica on Colletotrichum lindemuthianum in cowpea. J Herbs, Spices Med Plants 6(2):33–40

    Google Scholar 

  6. Amulyavichus A, Daugvila A, Davidonis R, Sipavichus C (1998) Study of chemical composition of nanostructural materials prepared by laser cutting of metals. Fiz Met Metalloved 85:111–117

    Google Scholar 

  7. Anibijuwon II, Udeze AO (2009) Antimicrobial activity of Carica papaya (pawpaw leaf) on some pathogenic organisms of clinical origin from South-Western Nigeria. Ethnobotanical Leaflets 13:850–864

    Google Scholar 

  8. Antherton P (1998) Aloe vera: magic or medicine? Nurs Stand 12(41):49–54

    Article  Google Scholar 

  9. Aravind G, Debjit B, Duraivel S, Harish G (2013) Traditional and medicinal uses of Carica papaya. J Med Plants Stud 1(1):7–15

    Google Scholar 

  10. Arora DS, Onsare JM, Kuar H (2013) Bioprospecting of Moringa (Moringaceae): microbiological perspective. J Pharmacog Phytochem 1:193–215

    Google Scholar 

  11. Arti R Verma, Vijayakumar M, Chandra S Mathela, Chandana V Rao (2009) In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem Toxicol 47(9): 2196–2201

    Google Scholar 

  12. Babu R, Chaudhuri M (2005) Home water treatment by direct filtration with natural coagulant. J Water Health 3:27–30

    Article  CAS  Google Scholar 

  13. Bandyopadhyay U, Biswas K, Sengupta et al A (2004) Clinical studies on the effect of Neem (Azadirachtaindica) bark extract on gastric secretion and gastro duodenal ulcer. Life Sci 75(24):2867–2878

    Article  CAS  Google Scholar 

  14. Barua CC, Talukdar A, Barua AG, Chakraborty A, Sarma RK, Bora RS (2010) Evaluation of the wound healing activity of methanolic extract of Azadirachta Indica (Neem) and Tinospora cordifolia (Guduchi) in rats. Pharmacologyonline 1:70–77

    Google Scholar 

  15. Bennett RN, Mellon FA, Foidi N (2003) Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi—purpose trees Moringa Oleifera L. (Horseradish Tree) and Moringa stenopetala L. J Agri Food Chem 51:3546–3553

    Article  CAS  Google Scholar 

  16. Brown JP (1980) A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compounds. Mutat Res 75(3):243–277. https://doi.org/10.1016/0165-1110(80)90029-9

    Article  CAS  Google Scholar 

  17. Bruneton J (1995) Pharmacognosy, phytochemistry, medicinal plants. Intercept, Hampshire, England, pp 434–436

    Google Scholar 

  18. Budda S, Butryee C, Tuntipopipat S (2011) Suppressive effects of Moringa Oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulphate. Asian Pacific J Cancer Prev 12:3221–3228

    Google Scholar 

  19. Castleman M (1991) The healing herbs. Rodale Press, Emmaus, pp 42–44

    Google Scholar 

  20. Che QM, Akao T, Hattori M, Kobashi K, Namba T (1991) Isolation of human intestinal bacteria capable of transforming Barbaloin to Aloe-Emodin Anthrone. Planta Med 57(1):15–19

    Article  CAS  Google Scholar 

  21. Choi SW, Son BW, Son YS, Park YI, Lee SK, Chung MH (2001) The wound healing effect of a glycoprotein fraction isolated from aloe vera. British J Dermatol 145(4):535–545. https://doi.org/10.1046/j.1365-2133.2001.04410.x

    Article  CAS  Google Scholar 

  22. Davis RH, Di Donato JJ, Hartman GM Hass RC (1994) Anti-inflammatory and wound healing activity of a growth substance in aloe vera. J Am Podiatr Med Assoc 84(2):77–81

    Article  CAS  Google Scholar 

  23. De Rodríguez D, Hernández-Castillo D, Rodríguez- García R, Angulo-Sanchez JL (2005) Antifungal activity in vitro of aloe vera pulp and liquid fraction against plant pathogenic fungi. Ind Crops Prod 21(1):81–87. http://dx.doi.org/10.1016/j.indcrop.2004.01.002

  24. Deepak V, Umamaheshwaran PS, Guhan K, Nanthini RA, Krithiga B, Jaithoon NM, Gurunathan S (2011) Synthesis of gold and silver nanoparticles using purified URAK. Colloid Surf B 86:353–358

    Article  CAS  Google Scholar 

  25. Dhar R, Dawar H, Garg S, Basir SF, Talwar GP (1996) Effect of volatiles from neem and other natural products on gonotrophic cycle and oviposition of Anopheles stephensi and An.culicifacies (Diptera:Culicidae). J Med Entomol 33(2):195–201

    Article  CAS  Google Scholar 

  26. Djeraba A, Quere P (2000) In vivo macrophage activation in chickens with Acemannan, a complex carbohydrate extracted from aloe vera. Int J Immunopharmacol 22(5):365–372. http://dx.doi.org/10.1016/S0192-0561(99)00091-0

    Article  CAS  Google Scholar 

  27. Dolly J, Prashant KB, Amit K, Mehta S, Geeta W (2009) Effects of Moringa Oleifera lam leaves aqueous extract therapy on hyperglycaemic rats. J Ethnopharmacol 123:392–396

    Article  Google Scholar 

  28. Ebana RUB, Madunagu BE, Ekpe ED, Otung IN (1991) Microbiological exploitation of caridac glycosides and Alkaloids from Garcinia kola, Borreria ocymoides, Kola nitida and Citrus aurantifolia. J Appl Bacteriol 71:398–401

    Article  CAS  Google Scholar 

  29. Ebong PE, Atangwho IJ, Eyong EU, Egbung GE (2008) The antidiabetic efficacy of combined extracts from two continental plants: Azadirachta indica (A. Juss) (Neem) and Vernonia amygdalina (Del.)(African Bitter Leaf). Am J Biochem Biotech 4(3):239–244

    Google Scholar 

  30. Ejele AE, Iwu IC, Enenebeaku CK, Ukiwe LN, Okolue BN (2012) Bioassay guided isolation, purification and characterization of antimicrobial compounds from basic metabolites of Garcinia kola. J Emerg Trends Eng Appl Sci (JETEAS) 3(4):668–672

    Google Scholar 

  31. Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N (2015) Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res Lett 10:302

    Article  CAS  Google Scholar 

  32. EPA (2007) Nanotechnology white paper, US Environmental Protection Agency Report EPA 100/B-07/001, Washington

    Google Scholar 

  33. Eshun K, HeQ (2004) Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries—a review. Crit Rev Food Sci Nutrition 44(2):91–96. http://dx.doi.org/10.1080/10408690490424694

    Article  Google Scholar 

  34. Fahey JW (2005) Moringa oleifera: a review of the medicinal evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees Life J 1(5)

    Google Scholar 

  35. Farombi EO, Akanni OO, Emerole O (2002) Antioxidant and scavenging activities of flavonoid extract (kolaviron) of Garcinia kola seeds. Pharmaceutical Biol 40:107–116

    Article  CAS  Google Scholar 

  36. Farombi EO, Mller P, Dragsted LO (2004) Ex-vivo and in vitro protective effects of kolaviron against oxygen-derived radical. Cell Biol Toxicol 20:71–82

    Article  Google Scholar 

  37. Femenia A, Sanchez ES, Simal S, Rossello C (1999) Compositional features of polysaccharides from aloe vera (Aloe barbadensis Miller) plant tissues. Carbohydrate Polymers 39(2):109–117. http://dx.doi.org/10.1016/S0144-8617(98)00163-5

    Article  CAS  Google Scholar 

  38. Florence O, Afef J, Tatiana K, Vernessa E, Michael C (2013) Green synthesis of silver nanoparticles, their Characterization, application and antibacterial activity. Int J Environ Res Public Health 10(10): 5221–5238

    Google Scholar 

  39. Fozia F, Meenu R, Avinash T, Abdul AK, Shaila F (2012) Medicinal properties of Moringa Oleifera: an overview of promising healer. J Med Plants Res 6:4368–4374

    Google Scholar 

  40. Ghimeray AK, Jin CW, Ghimire BK, Cho DH (2009) Antioxidant activity and quantitative estimation of azadirachtin and nimbin in Azadirachta indica A. Juss grown in foothills of Nepal. African J Biotech 8(13):3084–3091

    CAS  Google Scholar 

  41. Giordani R, Siepaio M, Moulin-Traffort J, Regli P (1991) Antifungal action of Carica papaya latex, isolation of fungal cell wall hydrolyzing enzymes. Mycoses 34(11–12):469–477

    CAS  Google Scholar 

  42. Girighari VVA, Malathi D, Geetha K (2011) Antidiabetic property of drumstick (Moringa Oleifera) leaf tablets. Int J Health Nutr 2:1–5

    Google Scholar 

  43. Govindachari T, Suresh G, Gopalakrishnan G, Banumathy B, Masilamani S (1998) Identification of antifungal compounds from the seed oil of Azadirachta indica. Phytoparasitica 26(2):109–116

    Article  CAS  Google Scholar 

  44. Guevara AP, Vargas C, Sakurai H et al (1999) An antitumour promoter from Moringa oleifera Lam. Mutat Res 440:181–188

    Article  CAS  Google Scholar 

  45. Gurav AS, Kodas TT, Wang LM, Kauppinen EI, Joutsensaari J (1994) Generation of nanometer-size fullerene particles via vapor condensation. Chem Phys Lett 218:304–308

    Article  CAS  Google Scholar 

  46. Gurunathan S, Han JW, Kim JH (2013) Green chemistry approach for the synthesis of biocompatible graphene. Int J Nanomed 8:2719–2732

    Article  CAS  Google Scholar 

  47. Gurunathan S, Han JW, Park JH, Kim E, Choi YJ, Kwon DN, Kim JH (2015) Reducedgrapheneoxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int J Nanomed 10:6257–6276

    Article  CAS  Google Scholar 

  48. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74:328–335

    Article  CAS  Google Scholar 

  49. Gustafson KR, Blunt JW, Munro MHG, Fuller RW, McKee TC, Cardellina JH II, McMahon JB, Cragg GM, Boyd MR (1992) The guttiferones, HIV inhibitory benzophenones from Symphonia globulifera, Garcinia livingstonei, Garcinia ovalifolia and Clusia rosea. Tetrahedron 48:10093–10102

    Article  CAS  Google Scholar 

  50. Habib SH, Makpol S, Abdul Hamid NA, Das S, Ngah WZ, Yusof YA (2008) Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics 63(6):807–813

    Article  Google Scholar 

  51. Haller JS (1990) A drug for all seasons, medical and pharmacological history of aloe. Bull N Y Acad Med 66:647–659

    Google Scholar 

  52. Ilango K, Maharajan G, Narasimhan S (2013) Anti-nociceptive and anti-inflammatory activities of Azadirachta indica fruit skin extract and its isolated constituent azadiradione. Nat Prod Res 27(16):1463–1467

    Article  CAS  Google Scholar 

  53. Ito S, Teradaira R, Beppu H, Obata M, Nagatsu T, Fujita K (1993) Properties and pharmacological activity of carboxypeptidase in Aloe arborescens Mill. var. Natalen- sis Berger. Phytother Res 7(7):S26–S29. http://dx.doi.org/10.1002/ptr.2650070710

  54. Iwu M (1993) Handbook of African medicinal plants. CRC Press, Boca Raton, FL

    Google Scholar 

  55. Jabeen K, Hanif S, Naz S, Iqbal S (2013) Antifungal activity of Azadirachta indica against Alternaria solani. J Life Sci Technol 1(1):89–93

    Google Scholar 

  56. Jackson Rafael OP, Giselle Cristina S, Renata AC, Joseí res Lira de Sousa Fontenelle, Gustavo HFV, Antonio AFF, Regine Helena Silva dos Fernandes V (2011) In vitro antibacterial effect of aqueous and ethanolic Moringa leaf extracts. Asian Pac J Trop Med 4(3): 201–204

    Google Scholar 

  57. Jean B (1999) Carica papaya. In: Pharmacognosy, phytochemistry of medicinal plants, 2nd ed. Lavoisier, France, p 221–223

    Google Scholar 

  58. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microb 74:2171–2178

    Article  CAS  Google Scholar 

  59. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloid Surface B 65:150–153

    Article  CAS  Google Scholar 

  60. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413

    Article  CAS  Google Scholar 

  61. Kartikar KR, Basu BD (1998) Indian medicinal plants. Reprint, 2nd ed. Springer Science + Business Media, New York, USA, pp 1097–1099

    Google Scholar 

  62. Keuk-Jun K, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484

    Google Scholar 

  63. Kher A, Chaurasia SC (1997) Antifungal activity of essential oils of three medical plants. Indian Drugs 15:41–42

    Google Scholar 

  64. Kpakote KG, Aakpagana K, de Souza C, Nenonene AY, Djagba TD, Bouchet P (1998) Antimicrobial activities of some Togolese species of chewing sticks. Ann Pharm Fr 56:184–186

    CAS  Google Scholar 

  65. Kruis FE, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 69:329–334

    Article  Google Scholar 

  66. Lee JK, Lee MK, Yun YP, Kim Y, Kim JS, Kim YS, Kim K, Han SS, Lee CK (2001) Acemannan purified from aloe vera induces phenotypic and functional maturation of immature dendritic cells. Int Immunopharmacol 1(7):1275–1284

    Article  CAS  Google Scholar 

  67. Liechty WB et al (2010) Polymers for drug delivery systems. Ann Rev Chem Biomol Eng 1:149–173. https://doi.org/10.1146/annurev-chembioeng-073009-100847

    Article  CAS  Google Scholar 

  68. Lloyd CAC, Menon T, Umamaheshwari K (2005) Anticandidal activity of Azadirachta indica. Indian J Pharmacol 37(6):386–389

    Article  Google Scholar 

  69. Madubunyi II (2008) Antimicrobial activities of the constituents of garcinia kola seeds. Int J Pharmacog 33(3): 232–237

    Article  Google Scholar 

  70. Majambu M (2012) Therapeutic potential of moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Front Pharmacol 3

    Google Scholar 

  71. ManasRanjan N, Divya A, Rasmirekha B, Ayon B, Suhasini D, Sanjay K (2014) Study of anti-inflammatory effect of neem seed oil (Azadirachta indica) on infected albino rats. J Health Res Rev 1(3): 66

    Article  Google Scholar 

  72. Maurice I, Ogo I (1982) Flavonoids of garcinia kola seeds. J Nat Prod 45(5): 650–651

    Google Scholar 

  73. Mazi EA, Okoronkwo KA, Ibe UK (2013) Physico-chemical and nutritive properties of bitter kola (Garcinia kola). J Nutr Food Sci 03(04): 1–3

    Google Scholar 

  74. Mohammad AA (2016) Therapeutics role of (neem) and their active constituents in diseases prevention and treatment. Evid-Based Complement Altern Med 2016: 1–11

    Google Scholar 

  75. Naghsh N, Ghyasiyan M, Soleimani S, Torkan S (2012) Comparison between alcoholic eucalyptus and nano-silver as a new nanocomposition in growth inhibition of Aspergillus niger. Ind J Sci Technol 5: 2445–2447

    Google Scholar 

  76. Ogbuewu IP, Odoemenam VU, Obikaonu HO, Opara MN, Emenalom OO, Uchegbu MC, Okoli IC, Esonu BO, Iloeje MU (2011) The growing importance of neem (Azadirachta indica A. Juss) in agriculture, industry, medicine and environment: A review. Res J Medi Plant 5(3): 230–245

    Article  Google Scholar 

  77. Okoli C, Okoli I, Emenalom O, Esonu B, Udedibie A (2014). The emerging nutricitical benefits of the african wonder nut (Garcinia kola heckel): A review. Global J Anim Sci Res 2(2): 170–183

    Google Scholar 

  78. Onsare JG, Kaur H, Arora DS (2013) Antimicrobial activity of Moringa Oleifera from different locations against some human pathogens. Acad J Medi Plants 1(5): 080–091

    Google Scholar 

  79. Ratyakshi, CRP (2009) Colloidal synthesis of silver nanoparticles. Asian J Chem 21(10): S113–S116

    Google Scholar 

  80. Susan WP, Wijnhoven WJGM, Peijnenburg CAH, Werner IH, Agnes GO, Evelyn HWH, Boris R, Julia B, Ilse G, Dik Van De Meent, Susan D, Wim H De Jong, Maaike van Zijverden, Adriënne JAM, Sips REG (2009) Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2): 109–138

    Article  CAS  Google Scholar 

  81. Tebekeme O (2009) In vitro antioxidant and free radical scavenging activities of Garcinia kola seeds. Food Chem Toxicol 47(10): 2620–2623

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nnamdi C. Iheaturu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iheaturu, N.C., Diwe, I.V., Daramola, O.O., Sadiku, E.R. (2019). Polymeric Nanomaterials for Drug Delivery. In: Gnanasekaran, D. (eds) Green Biopolymers and their Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8063-1_11

Download citation

Publish with us

Policies and ethics