Skip to main content

Green Biopolymers and Its Nanocomposites in Various Applications: State of the Art

  • Chapter
  • First Online:
Green Biopolymers and their Nanocomposites

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

The conspectus studies of green bio-polymer and its nanocomposites have been reviewed. It covers the global biodegradable polymer market as well as its research scenarios. It also includes plastic (conventional) waste generation status, recent developments, and trends of green biopolymers and its wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gnanasekaran D, Venkata Prasad C (2018) Vegetable oil based bio-lubricants and transformer fluids, materials forming, machining, tribology, vol 1. Springer Nature, Singapore, pp 1–172

    Book  Google Scholar 

  2. Irwin A (2018) Fixing planet plastic: how we’ll really solve our waste problem, 16 May 2018, New Scientist, available at online: https://www.newscientist.com/article/mg23831780-100-fixing-planet-plastic-how-well-really-solve-our-waste-problem

  3. Fomin VA, Guzeev VV (2001) Biodegradable polymers, their present state and future prospects. ProgRubb Polym Tech 17:186–204

    CAS  Google Scholar 

  4. Mittal V (ed) (2011) Nanocomposites with biodegradable polymers: synthesis, properties, and future perspectives. Oxford University Press

    Google Scholar 

  5. Narasimhan S, Energy Alternatives India (2014), Biopolymers and bioplastics—a disruptive business opportunity in India and Worldwide? Available online at: www.eai.in/blog/2014/01/biopolymers-and-bioplastics-a-disruptive-business-opportunity-in-india-and-worldwide.html

  6. Bandyopadhyay S, Chen R, Giannelis EP (1999) Biodegradable organic-inorganic hybrids based on poly(L-lactide). Polym Mater Sci Eng 81:159–160

    CAS  Google Scholar 

  7. Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K (2002) New polylactide/layered silicate nanocomposites: role of organoclay. Chem Mater 14:4654–4661

    Article  CAS  Google Scholar 

  8. Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(L-lactide)-clay blend. J Polym Sci Part B: Polym Phys 35:389–396

    Article  CAS  Google Scholar 

  9. Pluta M, Caleski A, Alexandre M, Paul M-A, Dubois P (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J Appl Polym Sci 1497–1506

    Google Scholar 

  10. Dubey SP, Thakur VK, Krishnaswamy S, Abhyankar HA, Marchante V, Brighton JL (2017) Progress in environmental-friendly polymer nanocomposite material from PLA: synthesis, processing and applications. Vacuum 146:655–663

    Article  CAS  Google Scholar 

  11. Sinha Ray S, Yamada K, Okamoto M, Ueda K (2002) New polylactide/layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2:1093–1096

    Article  Google Scholar 

  12. WhanRhim PJ, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  Google Scholar 

  13. Maiti P, Batt CA, Giannelis EP (2003) Renewable polymers: synthesis and properties of PHB nanocomposites. Polym Mater Sci Eng 88:58–59

    CAS  Google Scholar 

  14. Chen GX, Hao GJ, Guo TY, Song MD, Zhang BH (2004) Crystallization kinetics of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/clay composites. J Appl Polym Sci 93:655–661

    Article  CAS  Google Scholar 

  15. Mohammadi Nafchi A, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch-Stärke 65(1–2):61–72

    Article  CAS  Google Scholar 

  16. de Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) A first insight on composites of thermopolymer starch and kaolin. Carbohydr Polym 45:189–194

    Article  Google Scholar 

  17. Marques AP, Reis RL, Hunt JA (2002) The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials 23:1471–1478

    Article  CAS  Google Scholar 

  18. McGlashan SA, Halley PJ (2003) Preparation and characterization of biodegradable starch-based nanocomposite materials. Polym Int 52:1767–1773

    Article  CAS  Google Scholar 

  19. Park HM, Li X, Jin CZ, Park CY, Cho WJ, Ha CK (2002) Preparation and properties of biodegradable thermopolymer starch/clay hybrids. Macromol Mater Eng 287:553–558

    Article  CAS  Google Scholar 

  20. Park HM, Lee WK, Park CY, Cho WJ (2003) Ha CS environmental friendly polymer: mechanical, thermal, barrier properties of thermpolymer starch/clay composites. J Mater Sci 38:909–915

    Article  CAS  Google Scholar 

  21. Wilhelm HM, Sierakowski MR, Souza GP, Wypych F (2003) Influences of layered compounds on the properties of starch/layered compound composites. Polym Int 52:1035–1044

    Article  CAS  Google Scholar 

  22. Sinha Ray S, Bousmina M (2005) Prog Mater Sci 50:962–1079

    Article  Google Scholar 

  23. Tsujimoto T, Uyama H, Kobayashi S (2003) Green nanocomposites from renewable resources: biodegradable plant oil–silica hybrid coatings. Macromol Rapid Commun 24:711–714

    Article  CAS  Google Scholar 

  24. Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A, Kobayashi S (2003) Green nanocomposites from renewable resources: plant oil–clay hybrid materials. Chem Mater 15:2492–2494

    Article  Google Scholar 

  25. Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A, Kobayashi S (2004) Organic–inorganic hybrids from renewable plant oils and clay. Macromol Biosci 4:354–360

    Article  CAS  Google Scholar 

  26. Deshmukh K, Ahamed MB, Deshmukh RR (2017) Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J Mater Sci: Mater Electron 28:973

    CAS  Google Scholar 

  27. Park HM, Liang X, Mohanty AK, Misra M, Drazal LT (2004) Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules 37:9076–9082

    Article  CAS  Google Scholar 

  28. Etxabide A, Uranga J, Guerrero P, de la Caba K (2017) Development of active gelatin films by means of valorisation of food processing waste: a review. Food Hydrocoll 68:192–198

    Article  CAS  Google Scholar 

  29. Watzke HJ, Dieschbourg C (1994) Novel-silica-biopolymer nanocomposites: the silica sol–gel process in biopolymer organogel. Adv Colloid Interface Sci 50:1–14

    Article  CAS  Google Scholar 

  30. Zheng JP, Ping Li, Ma YL, Yao KD (2002) Gelatine/montmorillonite hybrid nanocomposite. I. Preparation and properties. J Appl Polym Sci 86:1189–1194

    Article  CAS  Google Scholar 

  31. European Bioplastics, Nova-Institute (2017) Available at online: www.biobased.eu/markets and www.european-bioplastics.org/market. Accessed on May 2018

  32. Bio-Based Building Blocks and Polymers by nova-Institute (2018) European bioplastics, nova-institute (2017). Available at online: www.biobased.eu/markets and www.european-bioplastics.org/market. Accessed on Apr 2018

  33. Duboise T (2013) Bioplastic bags gaining momentum in India Italy, plastic bag ban report. Available at online: http://plasticbagbanreport.com/bioplastic-bags-gaining-momentum-in-india-and-italy/. Accessed May 2018

  34. Shreeshan V, Ishan K (2018) India’s plastic consumption increases at over 10 per cent year-on-year, Waste Management, Down to earth, 15 June 2018. Available in online: www.downtoearth.org.in/news/breaching-the-threshold-60748

  35. Rajit S, Kiran P (2018) State of waste plastic, down to earth, 4 June 2018. Available in online: www.downtoearth.org.in/factsheet/state-of-waste-plastic-60749

  36. Kamath S (2016) Can BioPlastics flourish in India? Ecodeaz. Available at online: www.ecoideaz.com/expert-corner/bioplastics-in-india. Accessed on May 2018

  37. Kwon IC, Bae YH, Kim SW (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354(6351):291–293

    Article  CAS  Google Scholar 

  38. Jónsson A (2016) Uses algae to create biodegradable water bottles, De zeen magazine. Available at online: https://www.dezeen.com/2016/03/20/ari-jonsson-algae-biodegradable-water-bottles-iceland-academy-arts-student-designmarch-2016/

  39. Abdul Khalil HPS, Tye YY, Saurabh CK, Leh CP, Lai TK, Chong EWN, Nurul Fazita MR, Mohd Hafiidz J, Banerjee A, Syakir MI (2017) Biodegradable polymer films from seaweed polysaccharides: a review on cellulose as a reinforcement material. Express Polym Lett 11:244–265

    Article  CAS  Google Scholar 

  40. Seyed Ahmad A, Azman H, Mat Uzir W (2015) Materials for food packaging applications based on bio-based polymer nanocomposites: a review. J Thermopolym Comp Mater 30:143–173

    Google Scholar 

  41. Gould SE (2011) Plastic from bacteria—now in algae American scientific 2011. Available at online: www.blogs.scientificamerican.com/lab-rat/plastic-from-bacteria-now-in-algae. Accessed May 2018

  42. Zhu J-B, Watson EM, Tang J, Chen EYX (2018) A synthetic polymer system with repeatable chemical recyclability. Science 360:398–403

    Article  CAS  Google Scholar 

  43. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351(6278):1196–1199

    Article  CAS  Google Scholar 

  44. Susan Smillie (2017) From sea to plate: how plastic got into our fish. The guardian. Available online: https://www.theguardian.com/lifeandstyle/2017/feb/14/sea-to-plate-plastic-got-into-fish. Accessed on May 2018

  45. Daily excelsior (2014) Handshake: a man shakes hand with branch of a tree that looks like a hand on the occasion of Environment Day on Thursday. Available in online: http://www.dailyexcelsior.com/handshake-man-shakes-hand-branch-tree-looks-like-hand-occasion-environment-day-thursday/. Accessed on May 2018

  46. Kaeb H, Aeschelmann F, Dammer L, Carus M (nova-Institute) (2016) Market study on the consumption of biodegradable and compostable plastic products in Europe 2015 and 2020. Available at online: https://bio-based.eu/top-downloads. Accessed on June 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhorali Gnanasekaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gnanasekaran, D. (2019). Green Biopolymers and Its Nanocomposites in Various Applications: State of the Art. In: Gnanasekaran, D. (eds) Green Biopolymers and their Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8063-1_1

Download citation

Publish with us

Policies and ethics