Skip to main content

Passive Circuits

  • Chapter
  • First Online:
Si-RF Technology
  • 417 Accesses

Abstract

Modern communication world demands compact, miniaturized, and tunable circuits on a single IC chip. Past few decades observed the potentiality of silicon for Very Large- or ultra Large-Scale Integrated Circuit (VLSI/ULSI) applications. Now, cutting-edge technology is targeting silicon as a potential candidate for RF/microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.N. Burghartz, Silicon RF technology—the two generic approaches. Proc. ESSDERC, 143–153 (1998)

    Google Scholar 

  2. J.N. Burghartz, Status and trends of silicon RF technology. Microelectron. Reliab. 41(1), 13–19 (2001)

    Article  Google Scholar 

  3. A. Matsuzawa, RF-SoC-expectations and required conditions. IEEE Trans. Microw. Theory Tech. 50(1), 245–253 (2002)

    Article  Google Scholar 

  4. A.C. Reyes, S.M. El-Ghazaly, S. Dorn, M. Dydyk, D.K. Schröder, Silicon as a microwave substrate. Dig. Symp. Microw. Theory Techn., 1759–1762 (1994)

    Google Scholar 

  5. S.R. Taub, S.A. Alterovitz, Silicon technologies adjust to RF applications. Microw. RF 33(10), 60–74 (1994)

    Google Scholar 

  6. A.K. Agrawal, M.C. Driver, M.H. Hanes, H.M. Hobgood, P.G. McMullin, H.C. Nathanson, T.W.O. Keefe, T.J. Smith, J.R. Szendon, R.N. Thomas, MICROX—an advanced silicon technology for microwave circuits up to X-band. Techn. Dig. IEDM, 687–690 (1991)

    Google Scholar 

  7. J.-D. Park, Fully integrated silicon terahertz transceivers for sensing and communication applications. Ph.D. thesis, Technical Report No. UCB/EECS-2013-36 (2012)

    Google Scholar 

  8. J. Buechler, E. Kasper et al., Silicon high-resistivity substrate millimeter wave technology. IEEE Trans. MTT 34(12), 1516–1521 (1986)

    Google Scholar 

  9. K. Benaissa, J.Y. Yang et al., RF CMOS on high-resistivity substrates for system-on-chip applications. IEEE Trans. Electron Devices 50(3), 567–576 (2003)

    Google Scholar 

  10. Y. Shim, J.-P. Raskin, C. Roda Neve, M. Rais-Zadeh, RF MEMS passives on high-resistivity silicon substrates. IEEE Microw. Wirel. Compon. Lett. 23(12) (2013)

    Google Scholar 

  11. A.M. Niknejad, H. Hashemi (eds.), mm-Wave Silicon Technology 60 GHz and Beyond (Springer Publication, 2008)

    Google Scholar 

  12. RF and Microwave Coupled-Line Circuits, ed. by R.K. Mongia, I.J. Bahl, P. Bhatia, J. Hong (Artech House)

    Google Scholar 

  13. J. Schellenberg, H. Do-Ky, Low-loss planar monolithic baluns for K/Ka-band applications. IEEE MTT-S Dig., 1733–1736 (1999)

    Google Scholar 

  14. E.M.T. Jones, J.K. Shimizu, A wide-band strip line balun. IRE Trans. Microw. Theory Tech. 7, 128–134 (1959)

    Google Scholar 

  15. S. Walker, Broadband strip line balun using quadrature couplers. IEEE Trans. Microw. Theory Tech., 18, 132–133 (1968)

    Google Scholar 

  16. R. Bawer, J.J. Wolfe, A printed-circuit balun for use with a spiral antenna. IRE Trans. MTT 8, 319–325 (1960)

    Google Scholar 

  17. B.R. Hallford, A designer’s guide to planar mixer baluns. Microwaves 18, 52–57 (1979)

    Google Scholar 

  18. H. Hasegawa, M. Furukawa, H. Yanai, Properties of microstrip line on Si-SiO2 system. IEEE Trans Microw. Theory Tech. 19(11), 869–881 (1971)

    Google Scholar 

  19. Microwave Engineering, ed. by D.M. Pozar (Wiley)

    Google Scholar 

  20. S.B. Cohn, Parallel-coupled transmission line-resonator filters. IRE Trans. Microw. Theory Tech. 6, 223–231 (1958)

    Google Scholar 

  21. E.M.T. Jones, J.T. Bolljahn, Coupled-strip-transmission-line filters and directional couplers. IRE Trans. Microw. Theory Tech. 4, 78–81 (1956)

    Google Scholar 

  22. HFSS ver. 11, Ansoft Corporation (USA), www.ansoft.com

  23. A. Rehman, Microstrip design in a silicon technology using closed form analytical expressions. High Freq. Electron., 18–26 (2007)

    Google Scholar 

  24. D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, New York)

    Google Scholar 

  25. K.-K.M. Cheng, F.-L. Wong, A new Wilkinson power divider design for dual band application. IEEE Microw. Wirel. Compon. Lett. 17(9), 664–666 (2007)

    Article  Google Scholar 

  26. K. Singh, K. Nagachenchaiah, D. Bhatnagar, S. Pal, Wideband, compact microstrip band stop filter for tri-band, in IEEE International Conference on Recent Advances in Microwave Theory and Applications, November 2008, India

    Google Scholar 

  27. C. Monzon, A small dual-frequency transformer in two sections. IEEE Trans. Microwave Theory Tech. 51(4), 1157–1161 (2003)

    Google Scholar 

  28. K. Singh, K. Nagachenchaiah, SIR approach yields UWB microstrip filter. Microw. RF, 82–88 (2009)

    Google Scholar 

  29. A. Koelpin, G. Vinci, B. Laemmle, R. Weigel, The enhanced six-port receiver: a new concept for simultaneous data reception and direction of arrival detection, in 2011 IEEE MTT-S International Microwave Symposium (2011)

    Google Scholar 

  30. A.W. Scott, Understanding Microwave (Wiley, 2005)

    Google Scholar 

  31. M. Mirzaee, M. Nosrati, A novel design approach to the miniaturization of dual-band branch-line coupler. IEICE Electron. Express 8, 2099–2034 (2011)

    Google Scholar 

  32. K.-S. Chin, K.-M. Lin, Y.-H. Wei, T.-H. Tseng, Y.-C. Yang, Compact dual-band branchline coupler with stepped impedance stub line. IEEE Trans. Microw. Theory Tech. 58(5), 1213–1221 (2010)

    Article  Google Scholar 

  33. K. Singh, A. Karmakar, K. Nagachenchaiah, Dual-band (1:4) Wilkinson power divider on silicon. J. Electron. 1(1) (2012)

    Google Scholar 

  34. G. Strauss, P. Ehert, W. Menzel, On-wafer measurements of microstrip-based MMIC’s without via-holes. MTT-S Int. Microw. Symp. Digest, 1399–1402 (1996)

    Google Scholar 

  35. G. Gauthier, L. Kathei, G. Rebeiz, W-band finite ground waveguide to microstrip transitions, MTT-S Int. Microw. Symp. Digest, 1996, pp. 1399–1402

    Google Scholar 

  36. J. Raskin, G. Gauthier, L. Kathei, G. Rebeiz, Mode conversion at GCPW-to-microstrip line transitions. IEEE Trans. Microw. Theory Tech. 48, 158–161 (2000)

    Article  Google Scholar 

  37. M. Houdart, C. Aury, Various excitations of coplanar waveguide. MTT-S Int. Microw. Symp. Digest, 116–118 (1979)

    Google Scholar 

  38. D. Williams, T. Miers, A coplanar probe to microstriptransition. IEEE Trans. MTT 36, 1219–1223 (1988)

    Article  Google Scholar 

  39. A.M. ESafwat, K. Zaki, W. Johnson, C. LEE, Novel design of coplanar waveguide to microstrip transition. MTT-S Digest 2, 607–610 (2001)

    Google Scholar 

  40. A.M.E Safwat, K. Zaki, W. Johnson, C. LEE, Novel transition between different configurations of planar transmission lines. IEEE Microw. Wirel. Compon. Lett. 12(4) (2002)

    Google Scholar 

  41. K. Singh, A. Karmakar, K. Nagachenchaiah, Design and development of X-band planar balun on silicon substrate. IETE J. Res. 59(5), 510–514 (2013)

    Google Scholar 

  42. A. Karmakar, N. Kaur, Dual-band six port receiver module on silicon. Int. J. Comput. Sci. Netw., 178–181 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Karmakar .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karmakar, A., Singh, K. (2019). Passive Circuits. In: Si-RF Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-8051-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8051-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8050-1

  • Online ISBN: 978-981-13-8051-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics