Skip to main content
  • 511 Accesses

Abstract

A pattern of both competition and cooperation has been formed in the fields of space and Earth observation today. Major space powers and developmental organizations have launched new strategies and programs revealing the development of future space and Earth observation technology. Most nations desire a foothold in space and Earth observation, where competition is always considered to be the theme of future development. At the same time, global environmental change requires all nations to work closely together to monitor and study such change. The four global summits on Earth observation and the establishment of GEOSS have led global Earth observation activities to greater and more effective international cooperation. There is little doubt that the USA and Europe have been the leaders in Earth observation technology. Their present situation and development trends have been detailed in the third and fourth chapters. This chapter will discuss the contributions and development of Earth observation satellites in secondary countries, including Russia, Japan, and Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Casolino M, Picozza P (2008) Launch and commissioning of the PAMELA experiment on board the Resurs-DK1 satellite. Adv Space Res 41:2064–2070

    Article  Google Scholar 

  • Cherny IV, Mitnik LM, Mitnik ML et al (2010) On-orbit calibration of the “meteor-m” microwave imager/sounder. In: IEEE international geoscience and remote sensing symposium, pp 558–561

    Google Scholar 

  • Chun HW, Sohn B, Kim D et al (2012) Solar channel calibration using desert targets in Australia: application to the MTSAT-1R visible sensor. J Meteorol Soc Jpn 90:191–205

    Article  Google Scholar 

  • Dash P, Walker N, Mishra D et al (2012) Atmospheric correction and vicarious calibration of Oceansat-1 ocean color monitor (OCM) data in coastal case 2 waters. Remote Sens 4:1716–1740

    Article  Google Scholar 

  • Dong F (2012) The current situation and future of Foreign marine satellites. Space Explor 12:24–27

    Google Scholar 

  • Fan J, Huang H et al (2005) Using RADARSAT-1 data to extract the area of sea-water culture. Marine Sci 10:44–47

    Google Scholar 

  • Gao G (2004) Future METEOR-3M polar-orbiting meteorological satellites of Russia. Infrared 11:39–40

    Google Scholar 

  • Gao F, An P (2008) New strategic trends of international space and earth observation technology. Remote Sens Technol Appl 23:688–696

    Google Scholar 

  • Gao H, Chen H, Liu H et al (2009) Earth observation satellite technology development in Foreign countrie. Spacecraft Eng 3:84–88

    Google Scholar 

  • Gewin V (2004) Mapping opportunities. Nature 427(6972):376–377

    Article  Google Scholar 

  • Gohil BS, Sikhakolli R, Gangwar RK (2013) Development of geophysical model functions for Oceansat-2 scatterometer. IEEE Geosci Remote Sens Lett 10:377–380

    Article  Google Scholar 

  • Goward SN, Chander G, Pagnutti M et al (2012) Complementarity of ResourceSat-1 AWiFS and landsat TM/ETM + sensors. Remote Sens Environ 123:41–56

    Article  Google Scholar 

  • Huang Y, Wang MH, Mao JT (2004) Retrieval of upper tropospheric relative humidity by the GMS-5 water vapor channel: a study of the technique. Adv Atmos Sci 21:53–60

    Article  Google Scholar 

  • Hwang Y, Lee BS, Kim H et al (2011a) GPS-based orbit determination for KOMPSAT-5 satellite. ETRI J 33:487–496

    Article  Google Scholar 

  • Hwang Y, Lee BS, Kim H et al (2011b) Orbit determination performances using single- and double-differenced methods: SAC-C and KOMPSAT-2. Adv Space Res 47:138–148

    Article  Google Scholar 

  • Hyer EJ, Reid JS, Prins EM et al (2013) Patterns of fire activity over Indonesia and Malaysia from polar and stationary satellite observations. Atmos Res 122:504–519

    Article  Google Scholar 

  • Jaehong O, Lee C, Chun SD (2013) Automated HRSI georegistration using orthoimage and SRTM: Focusing KOMPSAT-2 imagery. Comput Geosci 52:77–84

    Article  Google Scholar 

  • Janjai S, Laksanaboonsong J, Nunez M et al (2005) Development of a method for generating operational solar radiation maps from satellite data for a tropical environment. Sol Energy 78:739–751

    Article  Google Scholar 

  • Kawamura H, Qin H, Sakaida F et al (2010) Hourly sea surface temperature retrieval using the Japanese stationary satellite, multi-functional transport satellite (MTSAT). J Oceanogr 66:61–67

    Article  Google Scholar 

  • Kim MJ, Ou ML, Sohn EH et al (2011) Characteristics of sea surface temperature retrieved from MTSAT-1R and in-situ data. Asia-Pac J Atmos Sci 47:421–427

    Article  Google Scholar 

  • Kuang Y, Li A et al (2007) RADARSAT satellite products. Remote Sens Data 2:82–85

    Google Scholar 

  • Li N (2008) A study on the application of GPS occultation techniques. Academic dissertation, Wuhan University of Technology, Wuhan

    Google Scholar 

  • Li Z, Zhao X, Kahn R et al (2009) Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Ann Geophys 27:2755–2770

    Article  Google Scholar 

  • Lu N, Gu S (2016) Review and prospect on the development of meteorological satellites. J Remote Sens 20(5):832–841

    Google Scholar 

  • Ma L, Shi J (2011) ALOS earth observation program under the background of global change. Remote Sens Land Resour 2:9–11

    Google Scholar 

  • Mattia C, Francesca F, Francesca G et al (2012) A new rigorous model for high-resolution satellite imagery orientation: application to EROSA and QuickBird. Int J Remote Sens 33:2321–2354

    Article  Google Scholar 

  • Pandya MR, Murali KR, Kirankumar AS (2013) Quantification and comparison of spectral characteristics of sensors on board Resourcesat-1 and Resourcesat-2 satellites. Remote Sens Lett 4:306–314

    Article  Google Scholar 

  • Polyakov AV, Timofeyev YM, Kostsov VS, et al (2004) Trace gas and aerosol sounding of the atmosphere in sun occultation experiment with SAGE III device. In: Conference on remote sensing of clouds and the atmosphere VIII, 397, p 407

    Google Scholar 

  • Sathiyamoorthy V, Sikhakolli R, Gohil BS et al (2012) Intra-seasonal variability in Oceansat-2 scatterometer sea-surface winds over the Indian summer monsoon region. Meteorol Atmos Phys 117:145–152

    Article  Google Scholar 

  • Scholes R (2005) The global earth observation system of systems. Global Change Newslett 61:17–18

    Google Scholar 

  • Shimoda H, Xiong X (2012) Using CEOS reference standard targets to assess on-orbit performance of Resourcesat-2 AWiFS in comparison with Terra MODIS-preliminary results. In: Conference on earth observing missions and sensors—development, implementation, and characterization II, 8528

    Google Scholar 

  • Sohn BJ, Ham SH (2010) Assessment of the calibration performance of Meteosat-8/9 and MTSAT-1R visible channels using cloud targets. In: Conference on remote sensing of the atmosphere and clouds III, 7859

    Google Scholar 

  • Touzi R, Hawkins RK, Cote S (2013) High-precision assessment and calibration of polarimetric RADARSAT-2 SAR using transponder measurements. IEEE Trans Geosci Remote Sens 51:487–503

    Article  Google Scholar 

  • Wang J (2001) Development and innovation model of earth observation satellites in the early twenty-first century. Aerosp China 6:11–13

    Google Scholar 

  • Wu L, Wang P, Ying H (2011) India launches new earth observation satellite “IRS-2”. Space Int 08:25–30

    Google Scholar 

  • Wu Y, Shen H, Cui X et al (2012) Evaluation and fusion of SST data from MTSAT and TMI in East China Sea, Yellow Sea and Bohai Sea in 2008. Chin J Oceanol Limnol 30:697–702

    Article  Google Scholar 

  • Xia G (2006a) Present situation and future development of earth observation satellites of Russia. Space Int 07:13–16

    Google Scholar 

  • Xia G (2006b) India’s national satellite systems—India’s communication and meteorological satellites. Space Int 10:1–4

    Google Scholar 

  • Xu J (2005) Japan’s multi-function satellite “MTSAT”. Meteorol Sci Technol 1:1–2

    Google Scholar 

  • Zhang Z, She Z (2004) Present situation and development trend of the world’s meteorological satellites. Xiamen Sci Technol 2:21–25

    Google Scholar 

  • Zhou R (2004) Development trend of future earth observation satellites. Satell Appl 3:51–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, H., Fu, W., Liu, G. (2019). Other Earth Observation Satellites. In: Scientific Satellite and Moon-Based Earth Observation for Global Change. Springer, Singapore. https://doi.org/10.1007/978-981-13-8031-0_5

Download citation

Publish with us

Policies and ethics