Skip to main content

Frontiers of Moon-Based Earth Observation

  • Chapter
  • First Online:
  • 546 Accesses

Abstract

In recent years, scholars have proposed studying the Moon as a platform for Earth observation. This includes research on the observation geometry and related parameters, and simulating the typical applications of Moon-based observation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1–10

    Google Scholar 

  • Blazquez A, Velazquez S, Alonso A et al (2005) Comparison of top of the atmosphere GERB measured radiances with independent radiative transfer simulations obtained at the Valencia Anchor Station area. Proc SPIE 5979:143–151

    Google Scholar 

  • Burt J, Smith B (2012) Deep space climate observatory: the DSCOVR mission. In: IEEE aerospace conference 2012

    Google Scholar 

  • Civicioglu P (2012) Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci 46(3):229–247

    Google Scholar 

  • Comer RE, Slingo A, Allan RP (2007) Observations of the diurnal cycle of outgoing longwave radiation from the geostationary Earth radiation budget instrument. Geophys Res Lett 34(2):346–358

    Google Scholar 

  • Crawford IA (2014) Lunar resources: a review. Prog Phys Geogr 39(2):137–167

    Google Scholar 

  • Delano JW (2009) Scientific, exploration of the Moon. In: Astronomy from space: Sputnik to Space Telescope, Cambridge, MA, MIT Press, pp 61–80

    Google Scholar 

  • Detsis E, Doule O, Ebrahimi A (2013) Location selection and layout for LB10, a lunar base at the Lunar North Pole with a liquid mirror observatory. Acta Astronautica 85(Complete):61–72

    Google Scholar 

  • Folkman MA, Jarecke PJ, Lee RB (1993) Design of a solar diffuser for on-orbit calibration of the Clouds and the Earth’s Radiant Energy System (CERES) instruments. Proc Spie 1939:72–81

    Google Scholar 

  • Folkner WM, Williams JG, Boggs DH (2009) The planetary and Lunar Ephemeris DE 421. Interplanetary Netw Prog Rep 178:1–34

    Google Scholar 

  • Folkner WM, Williams JG, Boggs DH et al (2014) The planetary and Lunar Ephemerides DE430 and DE431. Interplanetary Netw Prog Rep 196:1–81

    Google Scholar 

  • Fornaro G, Franceschetti G, Lombardini F et al (2010) Potentials and limitations of Moon-Borne SAR imaging. IEEE Trans Geosci Remote Sens 48(7):3009–3019

    Google Scholar 

  • Gristey JJ, Chiu JC, Gurney RJ et al (2017) Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites. J Geophys Res Atmos 122(2):1114–1131

    Google Scholar 

  • GSFC (2008) A standardized Lunar coordinate system for the Lunar reconnaissance orbiter. LRO Project White Paper, pp 1–25

    Google Scholar 

  • Guo H, Ding Y, Liu G et al (2014) Conceptual study of lunar-based SAR for global change monitoring. Sci China Earth Sci 57(8):1771–1779

    Google Scholar 

  • Guo HD, Ye HL, Liu G (2018) Error analysis of exterior orientation elements on geolocation for a Moon-based Earth observation optical sensor. Int J Digit Earth 1–10

    Google Scholar 

  • Guo HD, Liu G, Ding YX (2017) Moon-based Earth observation: scientific concept and potential applications. Int J Digit Earth 10:1–12

    Google Scholar 

  • Hamill P (2016) Atmospheric observations from the Moon: a lunar Earth-observatory. In: IEEE geoscience and remote sensing symposium

    Google Scholar 

  • Hilton JL (2011) A comparison of the high accuracy planetary ephemerides DE421, EPM2008, and INPOP08. Journées Systèmes De Référence Spatio-temporels

    Google Scholar 

  • House FB (1986) A new methodology of determining directional albedo models from NIMBUS 7 ERB scanning radiometer measurements. Final Report Houseline Inc Swarthmore PA

    Google Scholar 

  • Jacobowitz H, Soule HV, Kyle HL et al (1984) The Earth Radiation Budget (ERB) experiment: an overview. J Geophys Res Atmos 89(D4):5021–5038

    Google Scholar 

  • Jiang L, Ni S, Wang X, Lei X et al (2016) Lunar-based SAR interferometry of macro-scale solid Earth’s dynamics: concepts, mechanism and models. In: IEEE international conference on geoscience and remote sensing symposium

    Google Scholar 

  • Jin Y, Moura JM (2007) TR-SAR: time reversal target focusing in spotlight SAR. In: IEEE international conference on acoustics

    Google Scholar 

  • Kuchynka P, Laskar J, Fienga A, Manche H (2010) A ring as a model of the main belt in planetary ephemerides. Astron Astrophys 514(13)

    Google Scholar 

  • Kyrölä E, Tamminen J, Leppelmeier GW et al (2004) GOMOS on Envisat: an overview. Adv Space Res 33(7):1020–1028

    Google Scholar 

  • Lieske JH (1979) Precession matrix based on IAU/1976/ system of astronomical constants. Astron Astrophys 73(3):282–284

    Google Scholar 

  • Lieske JH (1981) Planetary ephemerides. In: Reference coordinate systems for Earth dynamics, pp 295–304

    Google Scholar 

  • Ligas M, Banasik P (2011) Conversion between Cartesian and geodetic coordinates on a rotational ellipsoid by solving a system of nonlinear equations. Geodesy Cartography 60(2):145–159

    Google Scholar 

  • Link F (1969) Occultations D’étoiles par la Terre Observées de la Lune. https://doi.org/10.1016/0019-1035(69)90012-8

  • Loeb NG, Lyman JM, Johnson GC et al (2012) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5(2):110–113

    Google Scholar 

  • McCarthy DD, Petit G (2004) IERS conventions (2003). In: IERS technical note 32, pp 1–95

    Google Scholar 

  • Meng XM, Cao L, Qiu YL et al (2015) Data processing pipeline for pointing observations of Lunar-based ultraviolet telescope. Astrophys Space Sci 358(2):1–9

    Google Scholar 

  • Minnis P, Young DF, Sun-Mack S et al (2004) CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua. In: Proceedings of SPIE—the international society for optical engineering, pp 37–48

    Google Scholar 

  • Moccia A, Renga A (2010) Synthetic aperture radar for Earth observation from a Lunar base: performance and potential applications. IEEE Trans Aerosp Electron Syst 46(3):1034–1051. https://doi.org/10.1109/taes.2010.5545172

    Article  Google Scholar 

  • Molod A (2012) Constraints on the profiles of total water PDF in AGCMs from AIRS and a high-resolution model. J Clim 25(23):8341–8352

    Google Scholar 

  • Montenbruck O, Gill E (2002) Satellite orbits—models, methods and applications. Appl Mech Rev 55(2):2504–2510

    Google Scholar 

  • Morrison LV, Evans DW (1998) Check on JPL DE405 using modern optical observations. Astron Astrophys Suppl 132(3):381–386

    Google Scholar 

  • Mulholland JD, Silverberg EC (1972) Measurement of physical librations using laser retroreflectors. Moon 4(1–2):155–159

    Google Scholar 

  • Ouyang Z (2005) An introduction to lunar science. China Astronautic Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Pallé E, Goode PR (2009) The Lunar terrestrial observatory: observing the Earth using photometers on the Moon’s surface. Adv Space Res 43(7):1083–1089

    Google Scholar 

  • Petit G, Luzum B et al (2010) IERS conventions (2010). In: Iers technical note 36, pp 1–95

    Google Scholar 

  • Petrova N, Abdulmyanov T, Hanada H (2012) Some qualitative manifestations of the physical libration of the Moon by observing stars from the lunar surface. Adv Space Res 50(12):1702–1711

    Google Scholar 

  • Pitjeva EV (2001) Modern numerical ephemerides of planets and the importance of ranging observations for their creation. Celest Mech Dyn Astron 80(3–4):249–271

    Google Scholar 

  • Qi Z, Yu Y, Cao L et al (2016) Corrigendum: astrometric support for the Lunar-based ultraviolet telescope (2015, PASP, 127, 1152). Publ Astron Soc Pac 127(957):1152–1160

    Google Scholar 

  • Rabe E, Schanzle A (1962) Periodic librations about the triangular solutions of the restricted Earth-Moon problem and their orbital stabilities. Astron J 67:732

    Google Scholar 

  • Ren YZ, Guo HD, Liu G et al (2017) Simulation study of geometric characteristics and coverage for Moon-based Earth observation in the electro-optical region. IEEE J Sel Top Appl Earth Observations Remote Sens 1–10

    Google Scholar 

  • Ren C, Peng J, She D et al (2011) Effects of low GPS satellite elevation mask angle on estimation of tropospheric delay. J Geodesy Geodyn 31(6):124–127

    Google Scholar 

  • Rice JP, Lorentz SR, Lykke K et al (2011) NISTAR: The NIST advanced radiometer. Agu Fall Meeting Abstracts

    Google Scholar 

  • Rienecker M, Suarez M, Koster R et al (2007) Improving short-term climate forecasts with satellite observations. In: IEEE international conference on geoscience and remote sensing symposium 2007

    Google Scholar 

  • Seidelmann PK (2005) Report of the IAU/IAG working group on cartographic coordinates and rotational elements: 2006. Celest Mech Dyn Astron 91:203–215

    Google Scholar 

  • Shrestha AK, Kato S, Wong T et al (2017) TOA radiation balance study through reprocessed ERBS WFOV nonscanner data from 1985 to 1998. Agu Fall Meeting Abstracts 2017

    Google Scholar 

  • Smith GL, Rutan DA (2003) The diurnal cycle of outgoing longwave radiation from Earth radiation budget experiment measurements. J Atmos Sci 60(13):1529–1542

    Google Scholar 

  • Song Y, Wang X, Bi S et al (2017) Effects of solar radiation, terrestrial radiation and lunar interior heat flow on surface temperature at the nearside of the Moon: based on numerical calculation and data analysis. Adv Space Res 60(5):938–947

    Google Scholar 

  • Standish EM, Williams JG (2003) Orbital ephemerides of the Sun, Moon, and planets. In: Tensor, pp 1–33

    Google Scholar 

  • Stephens GL, Campbell GG, Haar THV (1981) Earth radiation budgets. J Geophys Res Oceans 86(C10):9739–9760

    Google Scholar 

  • Sun Z, Yang J, Zhang H (2013) Technological advancements and promotion roles of Chang’e-3 lunar probe mission. Sci China Technol Sci 56(11):2702–2708

    Google Scholar 

  • Swartz WH, Dyrud LP, Lorentz SR et al (2015) The RAVAN CubeSat mission: advancing technologies for climate observation. In: IEEE geoscience and remote sensing symposium 2015

    Google Scholar 

  • Tilley DG, Bonwit KS (1989) Reduction of layover distortion in SAR imagery. Remote Sens Environ 27(3):211–220

    Google Scholar 

  • Trenberth KE, Zhang Y, Fasullo JT et al (2015) Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth. J Geophys Res Atmos 120(9):3642–3659

    Google Scholar 

  • Valero FP (2006) Keeping the DSCOVR mission alive. Science 311(5762):775–776

    Google Scholar 

  • Weratschnig JM, Taylor DB, Bell SA et al (2010) Computation of the quantities describing lunar librations in the astronomical almanac. Syrte.obspm.fr, pp 1–15

    Google Scholar 

  • Wielicki BA, Young DF, Mlynczak MG et al (2013) Achieving climate change absolute accuracy in orbit. Bull Am Meteor Soc 94(10):1519–1539

    Google Scholar 

  • Wielicki BA (1998) Clouds and the Earth’s radiant energy system (CERES): an Earth observing system experiment. Bull Am Meteor Soc 36(4):1127–1141

    Google Scholar 

  • Xu Z, Chen K (2018) On signal modeling of Moon-based synthetic aperture radar (SAR) imaging of Earth. Remote Sens 10(3):486

    Google Scholar 

  • Ye H, Guo H, Liu G (2017a) Analysis of Earth observation scope from different positions on the Moon. In: Lunar and planetary science conference, 2017

    Google Scholar 

  • Ye H, Guo H, Liu G et al (2017b) Observation scope and spatial coverage analysis for Earth observation from a Moon-based platform. Int J Remote Sens 3:1–25

    Google Scholar 

  • Ye H, Guo H, Liu G et al (2018a) Looking vector direction analysis for the Moon-based Earth observation optical sensor. IEEE J Sel Top Appl Earth Observations Remote Sens 11(11):4488–4499

    Google Scholar 

  • Ye H, Guo H, Liu G et al (2018b) Observation duration analysis for Earth surface features from a Moon-based platform. Adv Space Res 62(2):274–287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, H., Fu, W., Liu, G. (2019). Frontiers of Moon-Based Earth Observation. In: Scientific Satellite and Moon-Based Earth Observation for Global Change. Springer, Singapore. https://doi.org/10.1007/978-981-13-8031-0_17

Download citation

Publish with us

Policies and ethics