Skip to main content
  • 517 Accesses

Abstract

Since the first artificial satellite was launched in 1957, Earth observation systems based on ground observation, aerial remote sensing, and satellite remote sensing have provided humankind with powerful Earth observation capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aria DD, Monti GA (2007) High-resolution spaceborne SAR focusing by SVD-Stolt. IEEE Geosci Remote Sens Lett 4:639–643

    Article  Google Scholar 

  • Carruthers GR, Page T (1972) Apollo 16 far-ultraviolet camera/spectrograph: Earth observations. Science 177:788–791

    Article  Google Scholar 

  • Charles LJ, Steven R, Fish P et al (2004) The archaeology of global change: the impact of humans on their environment Redman. Daniel Smithsonian Books

    Google Scholar 

  • Curland JC, Mcdonough RN (1991) Synthetic aperture radar: systems and signal processing. New York: John Wiley & Sons Inc

    Google Scholar 

  • Davide B, Stephen EH (2010) Radar imaging form geosynchronous orbit: temporal decorrelation aspects. IEEE Trans Geosci Remote Sens 48:2924–2929

    Article  Google Scholar 

  • Eldhuset K (1998) A new fourth-order processing algorithm for spaceborneSAR. IEEE Trans Aerosp Electron Syst 34:824–835

    Article  Google Scholar 

  • Fa W, Jin YQ (2007) Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer. Icarus 190(1):15–23

    Google Scholar 

  • Foing BH (1994) Astronomy and space science from the moon. Pergamon Pr, Series: Adv Space Res

    Google Scholar 

  • Fornaro G, Franceschetti G et al (2010) Potentials and limitations of moon-borne SAR imaging. IEEE Trans Geosci Remote Sens 48:3009–3019

    Article  Google Scholar 

  • Guo HD (2010) Spatial observation and cognition of global change sensitive factors. Bull Chin Acad Sci 25:167–169

    Google Scholar 

  • Harlan JS, Alexander AG, Wendell M (1991) International manned lunar base: beginning the 21st century in space. Sci Glob Secur 2:209–233

    Article  Google Scholar 

  • http://database.eohandbook.com/database/missiontable.aspx

  • http://www.lpi.usra.edu/meetings/LEA/whitepapers/Johnson_etal_v02.pdf

  • http://www.lpi.usra.edu/meetings/LEA/whitepapers/Ramsey_lunar_abs.pdf

  • Huang S (2007) Surface temperatures at the nearside of the Moon as a record of the radiation budget of Earth’s climate system. Adv Space Res. https://doi.org/10.1016/j.asr..04.093

  • James BC (2002) Introduction to remote sensing, 3rd edn. Taylor and Francis, Abingdon

    Google Scholar 

  • Johnson JR, Lucey PG et al (2007) Visible/near-infrared remote sensing of Earth from the Moon. In: NASA advisory council workshop on science associated with the lunar exploration architecture white papers

    Google Scholar 

  • Kang J, Wang F et al (2005) Antarctic cryosphere & global change research—ice sheet & global climate records. Chin J Nat 27:351–356

    Google Scholar 

  • Kondratyev KY, Krapivin VF, Phillipe GW (2010) Global environmental change. Springer, Berlin and Heidelberg GmbH & Co. K

    Google Scholar 

  • Lambin EF, Geist HJ (2006) Land use and land cover change: local processes and global impacts. Springer, Berlin and Heidelberg GmbH & Co. K

    Book  Google Scholar 

  • Laszlo E (1972) The systems view of the world. Basil Blackwell, Oxford

    Google Scholar 

  • Li J, Wang L (2011) Characteristics of vegetation change and its relationship with climate factors in South Central Ningxia. Chin Agric Sci Bull 27:284–589

    Google Scholar 

  • Moccia A, Renga A (2010) Synthetic aperture radar for Earth observation from a lunar base: performance and potential applications. IEEE Trans Aerosp Electron Syst 46:1034–1051

    Article  Google Scholar 

  • Oberst J, Christou A, Suggs R et al (2012) The present-day flux of large meteoroids on the lunar surface-a synthesis of models and observational techniques. Planet Space Sci 74(1):179–193

    Google Scholar 

  • Palle E, Goode PR (2009) The lunar Terrestrial observatory: observing the Earth using photometers on the Moon’s surface. Adv Space Res 43:1083–1089

    Article  Google Scholar 

  • Purkis SJ, Klemas VV (2011) Remote sensing and global environmental change. Wiley, Hoboken

    Book  Google Scholar 

  • Ramsey MS (2007) Thermal infrared data from the Moon: hazards and hot-spots. In: NASA advisory council workshop on science associated with the lunar exploration architecture white papers

    Google Scholar 

  • Rignot E, Mouginot J, Scheuchl B (2011) Ice flow of the Antarctic ice sheet. Science 333:1427–1430

    Article  Google Scholar 

  • Rosenqvist A, Shimada M, Chapman B et al (2000) The global rain forest mapping project—a review. Int J Remote Sens 21:1375–1387

    Article  Google Scholar 

  • Rosenqvist A, Shimada M, Ito N et al (2007) ALOS PALSAR: a pathfinder mission for global—scale monitoring of the environment. IEEE Trans Geosci Remote Sens 45:3307–3316

    Article  Google Scholar 

  • Shen Z, Sun J, Zhang P et al (2009) Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nat Geosci 2:718–724

    Article  Google Scholar 

  • Shugart HH, Woodward FI (2011) Global change and the terrestrial biosphere: achievements and challenges. Wiley, Hoboken

    Google Scholar 

  • Sivakumar M, Lal R, Ramasamy S et al (2013) Climate change and food security in West Asia and North Africa. Springer, Berlin

    Book  Google Scholar 

  • Slaymaker O, Kelly R (2007) The cryosphere and global environmental change. Wiley, Hoboken

    Google Scholar 

  • Sun JL (2009) Earth system research and scientific data. Science Press, Beijing

    Google Scholar 

  • Tansley AG (1935) The use and abuse of vegetational concepts and forms. Ecology 16:284–307

    Article  Google Scholar 

  • Valero FPJ, Herman J, Minnis P et al (2000) Triana—a deep space Earth and solar observatory. Report No. 12.99, National Academy of Sciences Reports, Washington, DC

    Google Scholar 

  • Yu Z (2010) The phenology trend of vegetation in the north and south transects of Eastern China and its response to climate change. Academic Dissertation, Chinese Academy of Forestry Sciences, Beijing

    Google Scholar 

  • Zhang L, Fang X, Ren G (2005) Global change. Higher Education Press, Beijing, pp 10–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, H., Fu, W., Liu, G. (2019). Moon-Based Global Change Observation. In: Scientific Satellite and Moon-Based Earth Observation for Global Change. Springer, Singapore. https://doi.org/10.1007/978-981-13-8031-0_16

Download citation

Publish with us

Policies and ethics