Skip to main content

Ocean Salinity Satellite

  • Chapter
  • First Online:
  • 495 Accesses

Abstract

Changes in sea water salinity are closely related to the ocean environment and global climate change. Both the Soil Moisture and Ocean Salinity (SMOS) satellite launched by ESA in November 2009 and the Aquarius satellite launched by NASA in 2011 were designed to measure sea surface salinity. This chapter discusses China’s scientific satellites (operational and proposed) used to monitor sea surface salinity in the context of global change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ACIA (2004) Impacts of a warming arctic, arctic climate impact assessment. Cambridge University Press, Cambridge, UK, p 139

    Google Scholar 

  • Arnell NW, Liu C, Compagnucci R et al (2001) IPCC climate change 2001. Impacts, adaptation & vulnerability, The third assessment report of working group II of the intergovernmental panel on climate change (IPCC), 1000. Cambridge University Press, Cambridge, UK, pp 133–191

    Google Scholar 

  • Be’thoux JP, Gentili BB, Tailliez DD (1998) Warming and freshwater budget change in the Mediterranean since the 1940s, their possible relation to the greenhouse effect. Geophys. Res. Lett. 25. https://doi.org/10.1029/98gl00724

  • Blume HJC, Love AW, Van Melle MJ et al (1977) Radiometric observations of sea temperature at 2.65 GHz over the Chesapeake Bay. IEEE Trans Antennas Propagat AP-25(1):121–128

    Google Scholar 

  • Blume H-JC, Kendall BM, Fedors JC (1978) Measurement of ocean temperature and salinity via microwave radiometry. Boundary-Layer Meteorol 13:195–308

    Article  Google Scholar 

  • Blume H-JC, Kendall BM, Fedors JC (1981) Multifrequency radiometer detection of submarine freshwater sources along the Puerto Rican coastline. J Geophys Res 86

    Google Scholar 

  • Blume HC, Kendall BM (1982) Passive microwave measurements of temperature and salinity in coastal zones. IEEE Trans Geosci Remote Sens GE-20(3):394–404

    Google Scholar 

  • Bosilovich M, Schubert S, Walker G (2005) Global changes of the water cycle intensity. J Climate 18:1591–1608

    Article  Google Scholar 

  • Boutin J, Martin N, Yin X, et al (2012) First assessment of SMOS measurements over open ocean: part II Sea-surface salinity. IEEE Trans Geosci Remote Sens 50:1662–1675

    Google Scholar 

  • Boyer TP, Levitus S, Antonov JI et al (2005) Linear trends in salinity for the world ocean, 1955–1998. Geophys Res Lett 32:L01604. https://doi.org/10.1029/2004GL021791

    Article  Google Scholar 

  • Camps A, Gourrion J, Tarongi JM et al (2010) RFI analysis in SMOS imagery. In: Geoscience and remote sensing symposium (IGARSS), pp 2007–2010. https://doi.org/10.1109/igarss.2010.5654268

  • Chou C, Neelin JD, Chen CA et al (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Climate 22:1982–2005

    Article  Google Scholar 

  • Cooper NS (1988) The effect of salinity on tropical ocean models. J Phys Oceanog 18:697–707

    Article  Google Scholar 

  • Curry R, Dickson B, Yashayaev I (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426:826–829

    Article  Google Scholar 

  • Dai A, Fung IY, Del Genio AD (1997) Surface observed global land precipitation variations during 1900–88. J Clim 10:2943–2962

    Article  Google Scholar 

  • DelGenio AD, Lacis AA, Ruedy RA (1991) Simulations of the effect of a warmer climate on atmospheric humidity. Nature 351:382–385

    Article  Google Scholar 

  • Dickson B, Yashayaev I, Meincke J et al (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837

    Article  Google Scholar 

  • Dinnat EP, Boutin J, Caudal G et al (2002) Influence of sea surface emissivity model parameters at L-band for the estimation of salinity. Int J Remote Sens 23(23):5117–5122

    Google Scholar 

  • Dinnat EP, Boutin J, Caudal G et al (2003) Issues concerning the sea emissivity modeling at L band for retrieving surface salinity. Radio Sci 38(4). https://doi.org/10.1029/2002RS002637

  • Droppleman JD, Menella RA, Evans DE (1970) An airborne measurement of the salinity variations of the Mississippi River outflow. J Geophys Res 75(30):5909–5913

    Article  Google Scholar 

  • Durden SL, Vesecky JF (1985) A physical radar cross-section model for a wind-driven sea with swell. IEEE J Oceanic Eng OE-10(4):445–451

    Google Scholar 

  • Ellison WJ, Balana A, Delbos G et al (1998) New permittivity measurements of Sea Water. Radio Sci 33(3):639–648

    Article  Google Scholar 

  • Fedorov AV, Pacanowski RC, Philander SG et al (2004) The effect of salinity on the wind-driven circulation and the thermal structure of the upper ocean. J Phys Oceanogr 34:1949–1966

    Article  Google Scholar 

  • Fedorov AV, Barreiro M, Boccaletti G et al (2007) The freshening of surface waters in high latitudes: effects on the thermohaline and wind-driven circulations. J Phys Oceanogr 37:896–907

    Article  Google Scholar 

  • Gabarró C, Font J, Camps A et al. (2004) A new empirical model of sea surface microwave emissivity for salinity remote sensing. Geophys Res Lett 31 (1):L01309-1-L01309-5

    Google Scholar 

  • Goldsbrough GR (1933) Ocean currents produced by evaporation and precipitation. Proc R Soc Lond A141:512–517

    Google Scholar 

  • Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annu Rev Energy Environ 25:441–475

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrologic cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Ho W, Hall WF (1973) Measurements of the dielectric properties of sea water and NaCl solutions at 2.65 GHz. J Geophys Res 78(27):6301–6315

    Google Scholar 

  • Ho W, Love AW, Ban Melle MJ (1974) Measurements of the dielectric properties of sea water at 1.43 GHz. NASA contract report CR-2458

    Google Scholar 

  • Hollinger JP (1971) Passive microwave measurements of sea surface roughness. IEEE Trans Geosci 9:165–169

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DC et al (2001) Climate change 2001. The scientific basis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Huang B, Mehta VM (2005) Response of the Pacific and Atlantic Oceans to inter-annual variations in net atmospheric freshwater. J Geophys Res 110:C08008. https://doi.org/10.1029/2004JC002830

    Article  Google Scholar 

  • Huang B, Mehta V, Schneider N (2005) Oceanic response to idealized net atmospheric freshwater in the Pacific at the decadal time scale. J Phys Oceanogr 35:2467–2486

    Article  Google Scholar 

  • Hulme M, Osborn TJ, Johns TC (1998) Precipitation sensitivity to global warming: comparisons of observations with HadCM2 simulations. Geophys Res Lett 25:3379–3382

    Article  Google Scholar 

  • Irisov VG (1997) Small-slope expansion for thermal and reflected radiation from a rough surface. Waves Random Media 7(1):1–10

    Google Scholar 

  • Johnson JT, Zhang M (1999) Theoretical study of the small slope approximation for ocean polarimetric thermal emission. IEEE T Geosci Remote 37(5):2305–2316

    Google Scholar 

  • Klein LA, Swift CT (1977) An improved model for the dielectric constant of sea water atmicrowave frequencies. IEEE Trans Antennas Propag AP-25(1):104–111

    Google Scholar 

  • Kudryavtsev VN, Makin VK, Chapron B (1999) Coupled sea surfaceatmosphere model-Part 2: Spectrum of short wind waves. J Geophys Res 104(C4):7625–7639

    Google Scholar 

  • Le Vine D, Kao M, Garvine R et al (1998) Remote sensing of ocean salinity: results from the delaware coastal current experiment. J Atmos Oceanic Tech 15:1478–1484

    Article  Google Scholar 

  • Lei Z (1995) Research of oceanic passive microware sensing. Acad J Huazhong Univ Sci Technol 23(4):59–63

    Google Scholar 

  • Lei Z, Zeng Y, Lin S et al (1992) Research of aerial microwave remote sensing of sea water salinity. J Cosmol 13(2):62–67

    Google Scholar 

  • Lerner RM, Hollinger JP (1977) Analysis of 1.4 GHz radiometric measurements from Skylab. Remote Sens Environ 6:251–269

    Article  Google Scholar 

  • Liu X, Liu W, Tan S (1993) Research of aerial remote reconnaissance of sea water salinity using microwave radiometer. Acad J Hebei Univ Technol 22(1):26–34

    Google Scholar 

  • Loaciga HA, Valdes JB, Vogel R et al (1996) Global warming and the hydrologic cycle. J Hydrol 174:83–127

    Article  Google Scholar 

  • Lukas R (1990) The role of salinity in the dynamics and thermodynamics of the western Pacific warm pool. In: Proceedings of US-PRC international TOGA symposium. China Ocean Press, Beijing, pp 305–327

    Google Scholar 

  • Lukas G, Santiago-Mandujano F (2008) Inter-annual to inter-decadal salinity variations observed near Hawaii local and remote forcing by surface freshwater fluxes. Oceanography 21:46–55

    Article  Google Scholar 

  • Meehl G et al. (2007) Global climate projections. Solomon S et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, pp 747–846

    Google Scholar 

  • Minschwaner K, Dessler AE (2004) Water vapor feedback in the tropical upper troposphere: model results and observations. J Clim 17:1272–1282

    Article  Google Scholar 

  • NAST (2001) National assessment synthesis team, 2001. Climate Change impacts on the United States. The potential consequences of climate variability and change. Overview, US Global Change Research Program, Cambridge University Press, Cambridge, United Kingdom, p 612

    Google Scholar 

  • Paul JD, Susan EW, Richard JM (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458

    Article  Google Scholar 

  • Reul N, Chapron B (2003) A model of sea foam thickness distribution for passive microwave remote sensing applications. J Geophys Res Oceans 108(C10):3321-1-3321- 19

    Google Scholar 

  • Reynolds R, Ji M, Leetmaa A (1998) Use of salinity to improve ocean modeling. Phys Chem Earth 23:543–553

    Google Scholar 

  • Roether W, Manca BB, Klein B et al (1996) Recent changes in Eastern Mediterranean deep waters. Science 271:333–335

    Article  Google Scholar 

  • Shi J, Zhu D, Zhao J et al (2004) Theoretical analysis of retrieval accuracy of remote sensing of sea water salinity. Chin High Technol Lett P14(7):101–105

    Google Scholar 

  • Shi J, Lu Z, Li S et al (2006) L/S retrieval algorithm for spectral microwave remote sensing of sea water salinity and temperature. Chin High Technol Lett 16(11):1181–1184

    Google Scholar 

  • Skou N, Misra S, Balling JE et al (2010) L-Band RFI as experienced during airborne campaigns in preparation for SMOS. IEEE Trans Geosci Remote Sens 48:1398–1407

    Article  Google Scholar 

  • Soden BJ, Jackson DL, Ramaswamy V et al (2005) The radiative signature of upper tropospheric moistening. Science 310:841–844

    Article  Google Scholar 

  • Swift CT, McIntosh RE (1983) Considerations for microwave remote sensing of ocean-surface salinity. IEEE Trans Geosci Remote Sens GE-21(4):480–491

    Google Scholar 

  • Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change 42:327–339

    Article  Google Scholar 

  • Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water vapor. Clim Dyn 24:741–758

    Article  Google Scholar 

  • Wentz F (1975) A two-scale model for foam-free sea microwave brightness temperature. J Geophys Res 80 (24):3441–3446

    Google Scholar 

  • Williams PD, Guilyardi E, Sutton RT et al (2006) On the climate response of the low-latitude Pacific Ocean to changes in the global freshwater cycle. Clim Dyn 27:593–611

    Article  Google Scholar 

  • Williams PD, Guilyardi E, Sutton R et al (2007) A new feedback on climate change from the hydrological cycle. Geophys Res Lett 34:L08706. https://doi.org/10.1029/2007GL029275

    Article  Google Scholar 

  • Wong APS, Bindoff NL, Church JA (1999) Large-scale freshening of intermediate waters in the Pacific and Indian Oceans. Nature 400:440–443

    Article  Google Scholar 

  • Yan X, Liu Y, Zhang H et al (2005) Microwave remote sensing of sea-surface salinity - research of microwave radiation mechanism of smooth sea. Chin High Technol Lett 15(8):90

    Google Scholar 

  • Yueh SH (1997) Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE T Geosci Remote 35(6):1400–1418

    Google Scholar 

  • Zhong Y, Liu Z (2009) On the mechanism of pacific multidecadal climate variability in CCSM3: the role of the subpolar North Pacific ocean. J Phys Oceanogr 39:2052–2076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, H., Fu, W., Liu, G. (2019). Ocean Salinity Satellite. In: Scientific Satellite and Moon-Based Earth Observation for Global Change. Springer, Singapore. https://doi.org/10.1007/978-981-13-8031-0_14

Download citation

Publish with us

Policies and ethics