Skip to main content

The Potential Effects of Taurine in Mitigation of Radiation Nephropathy

  • Conference paper
  • First Online:
Taurine 11

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1155))

Abstract

Taurine (2-aminoethanesulfonic acid) is a sulfur-containing organic acid possessing several important effects, including antioxidant and anti-inflammatory ones. Exposure to ionizing radiation generates free radicals and reactive oxygen species (ROS) in irradiated cells, and free radical generation leads to oxidative stress. It is known that radiation nephropathy includes an inflammation-based process in which ROS and cytokines are responsible. Different doses of explored radiation can cause apoptosis, inflammation and a profound oxidative stress in kidneys. Oxidative stress is involved in renal injury after exposure to both ionizing radiation and inflammation. In this review, we describe the protective effect of taurine against several kidney diseases and the potential effects of taurine in the mitigation of radiation nephropathy. We also report that X-irradiation decreased the expression of taurine and TauT in the kidney. Taurine administration suppressed the decrease in the expression of taurine and TauT in the kidney after radiation exposure. Taurine might contribute to the mitigation of kidney injury induced by radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ROS:

reactive oxygen species

Tau:

taurine

TauT:

taurine transporter

References

  • Abe M, Takahashi M, Takeuchi K, Fukuda M (1968) Studies on the significance of taurine in radiation injury. Radiat Res 33:563–573

    Article  CAS  Google Scholar 

  • Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199

    Article  Google Scholar 

  • Cetiner M, Sener G, Sehirli AO, Eksioglu-Demiralp E, Ercan F, Sirvaci S (2005) Taurine protects against methotrexate-induced toxicity and inhibits leucocyte death. Toxicol Appl Pharmacol 209:39–50

    Article  CAS  Google Scholar 

  • Chtourou Y, Aouey B, Aroui S, Kebieche M, Fetoui H (2016) Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat. Chem Biol Interact 243:1–9

    Article  CAS  Google Scholar 

  • Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB (2010) Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15(4):360–371

    Article  Google Scholar 

  • Cohen EP, Robbins ME (2003) Radiation nephropathy. Semin Nephrol 23:486–499

    Article  Google Scholar 

  • Cohen EP, Fish BL, Moulder JE (2002) The renin-angiotensin system in experimental radiation nephropathy. J Lab Clin Med 139(4):251–257

    Article  CAS  Google Scholar 

  • Dainiak N (2002) Hematologic consequences of exposure to ionizing radiation. Exp Hematol 30:513–528

    Article  CAS  Google Scholar 

  • Das J, Sil PC (2012) Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats. Amino Acids 43(4):1509–1523

    Article  CAS  Google Scholar 

  • Datta K, Suman S, Kallakury BV, Fornace AJ Jr (2012) Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One 7:e42224

    Article  CAS  Google Scholar 

  • Dörr W (2010) Radiation effect in normal tissue – principles of damage and protection. Nuklearmedizin 49(Suppl 1):S53–S58

    PubMed  Google Scholar 

  • Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 17:330–346

    Article  CAS  Google Scholar 

  • Ito T, Schaffer SW, Azuma J (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42(5):1529–1539

    Article  CAS  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42(6):2223–2232

    Article  CAS  Google Scholar 

  • Kaneto H, Morrissey J, Klahr S (1993) Increased expression of TGF-beta 1 mRNA in the obstructed kidney of rats with unilateral ureteral ligation. Kidney Int 44(2):313–321

    Article  CAS  Google Scholar 

  • Kim GJ, Fiskum GM, Morgan WF (2006) A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res 66(21):10377–10383

    Article  CAS  Google Scholar 

  • Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci U S A 101(42):15070–15075

    Article  CAS  Google Scholar 

  • Koh JH, Lee ES, Hyun M, Kim HM, Choi YJ, Lee EY, Yadav D, Chung CH (2014) Taurine alleviates the progression of diabetic nephropathy in type 2 diabetic rat model. Int J Endocrinol 2014:397307

    Article  Google Scholar 

  • Kucuktulu E (2012) Protective effect of melatonin against radiation induced nephrotoxicity in rats. Asian Pac J Cancer Prev 13(8):4101–4105

    Article  Google Scholar 

  • Kwon HM, Handler JS (1995) Cell volume regulated transporters of compatible osmolytes. Curr Opin Cell Biol 7:465–471

    Article  CAS  Google Scholar 

  • Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 61(10):3894–3901

    CAS  PubMed  Google Scholar 

  • Lenarczyk M, Cohen EP, Fish BL, Irving AA, Sharma M, Driscoll CD, Moulder JE (2009) Chronic oxidative stress as a mechanism for radiation nephropathy. Radiat Res 171(2):164–172

    Article  CAS  Google Scholar 

  • Li C, Cao L, Zeng Q, Liu X, Zhang Y, Dai T, Hu D, Huang K, Wang Y, Wang X, Li D, Chen Z, Zhang J, Li Y, Sharma R (2005) Taurine may prevent diabetic rats from developing cardiomyopathy also by downregulating angiotensin II type2 receptor expression. Cardiovasc Drugs Ther 19(2):105–112

    Article  CAS  Google Scholar 

  • Moulder J, Cohen E (2014) Radiation-induced multi-organ involvement and failure: the contribution of radiation effects on the renal system. Br J Radiol 27:82–88

    Google Scholar 

  • Nabeel AI, Moawed FSM, Hassan H (2018) Immunomodulatory effect of new quinolone derivative against cisplatin/gamma radiation-induced renal and brain toxicity in mice. J Photochem Photobiol B 184:54–60

    Article  CAS  Google Scholar 

  • Pandya K, Clark GJ, Lau-Cam CA (2017) Investigation of the role of a supplementation with Taurine on the effects of hypoglycemic-hypotensive therapy against diabetes-induced nephrotoxicity in rats. Adv Exp Med Biol 975:371–400

    Article  CAS  Google Scholar 

  • Quesada A, O’Valle F, Montoro-Molina S, Gómez-Morales M, Caba-Molina M, González JF, de Gracia MC, Osuna A, Vargas F, Wangensteen R (2018) 5-aminoisoquinoline improves renal function and fibrosis during recovery phase of cisplatin-induced acute kidney injury in rats. Biosci Rep 38(2):pii: BSR20171313

    Article  Google Scholar 

  • Rashid S, Ali N, Nafees S, Hasan SK, Sultana S (2014) Mitigation of 5-fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in Wistar rats. Food Chem Toxicol 66:185–193

    Article  CAS  Google Scholar 

  • Robb WB, Condron C, Moriarty M, Walsh TN, Bouchier-Hayes DJ (2010) Taurine attenuates radiation-induced lung fibrosis in C57/Bl6 fibrosis prone mice. Ir J Med Sci 179(1):99–105

    Article  CAS  Google Scholar 

  • Robbins ME, Zhao W, Davis CS, Toyokuni S, Bonsib SM (2002) Radiation-induced kidney injury: a role for chronic oxidative stress? Micron 33(2):133–141

    Article  CAS  Google Scholar 

  • Rosen EM, Day R, Singh VK (2015) New approaches to radiation protection. Front Oncol 4:381

    Article  Google Scholar 

  • Sánchez-López E, Rodrigues Díez R, Rodríguez Vita J, Rayego Mateos S, Rodrigues Díez RR, Rodríguez García E, Lavoz Barria C, Mezzano S, Egido J, Ortiz A, Ruiz-Ortega M, Selgas R (2009) Connective tissue growth factor (CTGF): a key factor in the onset and progression of kidney damage. Nefrologia 29(5):382–391

    PubMed  Google Scholar 

  • Schaffer SW, Lombardini JB, Azuma J (2000) Interaction between the actions of taurine and angiotensin II. Amino Acids 18(4):305–318

    Article  CAS  Google Scholar 

  • Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87(2):91–99

    Article  CAS  Google Scholar 

  • Sugahara T, Nagata H, Tanaka T (1969) Experimental studies on radiation protection by taurine. Nihon Igaku Hoshasen Gakkai Zasshi 29:156–161

    CAS  PubMed  Google Scholar 

  • Trachtman H, Futterweit S, Maesaka J, Ma C, Valderrama E, Fuchs A, Tarectecan AA, Rao PS, Sturman JA, Boles TH (1995) Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats. Am J Phys 269(3 Pt 2):F429–F438

    CAS  Google Scholar 

  • Tsunekawa M, Wang S, Kato T, Yamashita T, Ma N (2017) Taurine administration mitigates cisplatin induced acute nephrotoxicity by decreasing DNA damage and inflammation: an immunocytochemical study. Adv Exp Med Biol 975:703–716

    Article  CAS  Google Scholar 

  • Yamashita T, Kato T, Tunekawa M, Gu Y, Wang S, Ma N (2017) Effect of radiation on the expression of taurine transporter in the intestine of mouse. Adv Exp Med Biol 975:729–740

    Article  CAS  Google Scholar 

  • Yang S, Liu M, Chen Y, Ma C, Liu L, Zhao B, Wang Y, Li X, Zhu Y, Gao X, Kong D, Duan Y, Han J, Yang X (2018) NaoXinTong capsules inhibit the development of diabetic nephropathy in db/db mice. Sci Rep 8(1):9158

    Article  Google Scholar 

  • Yoshida T, Goto S, Kawakatsu M, Urata Y, Li TS (2012) Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic Res 46:147–153

    Article  CAS  Google Scholar 

  • Yousef HN, Aboelwafa HR (2017) The potential protective role of taurine against 5-fluorouracil-induced nephrotoxicity in adult male rats. Exp Toxicol Pathol 69(5):265–274

    Article  CAS  Google Scholar 

  • Zhao W, Robbins ME (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16(2):130–143

    Article  CAS  Google Scholar 

  • Zhao W, Diz DI, Robbins ME (2007) Oxidative damage pathways in relation to normal tissue injury. Br J Radiol 80(Special Issue 1):S23–S31

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yui Naganuma, Yusuke Hasegawa and Riki Miyabayashi for the handling of the animals and for assistance in the drug administration part of this work. This work was supported by JSPS KAKENHI Grant Number JP 17 K15809 and JP 17H04654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takenori Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, N., Kato, T., Isogai, T., Gu, Y., Yamashita, T. (2019). The Potential Effects of Taurine in Mitigation of Radiation Nephropathy. In: Hu, J., Piao, F., Schaffer, S., El Idrissi, A., Wu, JY. (eds) Taurine 11. Advances in Experimental Medicine and Biology, vol 1155. Springer, Singapore. https://doi.org/10.1007/978-981-13-8023-5_46

Download citation

Publish with us

Policies and ethics