Skip to main content

Effects of Chronic Intake of a Low Concentration of Taurine on Physical Strength and Body Composition in Mice

  • Conference paper
  • First Online:
Taurine 11

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1155))

Abstract

Most studies of taurine on athletic performance have been conducted at acute and high doses in rodents. These doses and duration of administration are not reasonable for normal human life. Thus, it is not valid to extrapolate these animal results to people. Dose and duration that mimic human use of taurine in normal life can help to clarify the taurine effect in humans. This study investigated whether long-term, low-dose taurine (2% taurine drinking water for 25 weeks), similar to normal taurine intake in humans, can affect endurance exercise and body composition. Twenty ICR mice were divided into two groups. The control group received normal drinking water, and the taurine treated group received 2% taurine drinking water for 25 weeks. The mice were evaluated for body composition by mass and for physical strength by treadmill exhaustion and suspension tests. The supply of chronic 2% taurine drinking water has a slight effect on weight gain. In body composition analysis, a slight increase in body weight was due to an increase in muscle mass, not an increase in body fat. However, taurine ingestion did not increase endurance exercise. In conclusion, these results indirectly suggest that acute, high-dose taurine treatment is better than long-term, low-dose treatment to increase athletic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256:251–255

    Article  CAS  Google Scholar 

  • Ballard SL, Wellborn-Kim JJ, Clauson KA (2010) Effects of commercial energy drink consumption on athletic performance and body composition. Phys Sportsmed 38:107–117

    Article  Google Scholar 

  • Chen G, Nan C, Tian J, Jean-Charles P, Li Y, Weissbach H, Huang XP (2012) Protective effects of taurine against oxidative stress in the heart of MsrA knockout mice. J Cell Biochem 113:3559–3566

    Article  CAS  Google Scholar 

  • Cuisinier C, Ward RJ, Francaux M, Sturbois X, de Witte P (2001) Changes in plasma and urinary taurine and amino acids in runners immediately and 24h after a marathon. Amino Acids 20:13–23

    Article  CAS  Google Scholar 

  • Fujita T, Ando K, Noda H, Ito Y, Sato Y (1987) Effects of increased adrenomedullary activity and taurine in young patients with borderline hypertension. Circulation 75:525–532

    Article  CAS  Google Scholar 

  • Geiss KR, Jester I, Falke W, Hamm M, Waag KL (1994) The effect of a taurine-containing drink on performance in 10 endurance-athletes. Amino Acids 7:45–56

    Article  CAS  Google Scholar 

  • Ito T, Yoshikawa N, Schaffer SW, Azuma J (2014) Tissue taurine depletion alters metabolic response to exercise and reduces running capacity in mice. J Amino Acids 2014:964680

    Article  Google Scholar 

  • Lombardini JB (1983) Effects of ATP and taurine on calcium uptake by membrane preparations of the rat retina. J Neurochem 40:402–406

    Article  CAS  Google Scholar 

  • Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46:7–20

    Article  CAS  Google Scholar 

  • Matsuzaki Y, Miyazaki T, Miyakawa S, Bouscarel B, Ikegami T, Tanaka N (2002) Decreased taurine concentration in skeletal muscles after exercise for various durations. Med Sci Sports Exerc 34:793–797

    Article  CAS  Google Scholar 

  • Mizushima S, Nara Y, Sawamura M, Yamori Y (1996) Effects of oral taurine supplementation on lipids and sympathetic nerve tone. Adv Exp Med Biol 403:615–622

    Article  CAS  Google Scholar 

  • Mochizuki H, Oda H, Yokogoshi H (1998) Increasing effect of dietary taurine on the serum HDL-cholesterol concentration in rats. Biosci Biotechnol Biochem 62:578–579

    Article  CAS  Google Scholar 

  • Muller MJ, Geisler C, Pourhassan M, Gluer CC, Bosy-Westphal A (2014) Assessment and definition of lean body mass deficiency in the elderly. Eur J Clin Nutr 68:1220–1227

    Article  CAS  Google Scholar 

  • Murakami S, Kondo-Ohta Y, Tomisawa K (1999) Improvement in cholesterol metabolism in mice given chronic treatment of taurine and fed a high-fat diet. Life Sci 64:83–91

    Article  CAS  Google Scholar 

  • Pierno S, De Luca A, Camerino C, Huxtable RJ, Camerino DC (1998) Chronic administration of taurine to aged rats improves the electrical and contractile properties of skeletal muscle fibers. J Pharmacol Exp Ther 286:1183–1190

    CAS  PubMed  Google Scholar 

  • van Putten M, Kumar D, Hulsker M, Hoogaars WM, Plomp JJ, van Opstal A, van Iterson M, Admiraal P, van Ommen GJ, t Hoen PA, Aartsma-Rus A (2012) Comparison of skeletal muscle pathology and motor function of dystrophin and utrophin deficient mouse strains. Neuromuscul Disord 22:406–417

    Article  Google Scholar 

  • Reymond I, Sergeant A, Tappaz M (1996) Molecular cloning and sequence analysis of the cDNA encoding rat liver cysteine sulfinate decarboxylase (CSD). Biochim Biophys Acta 1307:152–156

    Article  Google Scholar 

  • Ripps H, Shen W (2012) Review: taurine: a “very essential” amino acid. Mol Vis 18:2673–2686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer S, Kim HW (2018) Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther (Seoul) 26:225–241

    Article  CAS  Google Scholar 

  • Shao A, Hathcock JN (2008) Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul Toxicol Pharmacol 50:376–399

    Article  CAS  Google Scholar 

  • Waldron M, Patterson SD, Tallent J, Jeffries O (2018) The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans: a meta-analysis. Sports Med 48:1247–1253

    Article  Google Scholar 

  • Yamori Y, Liu L, Mori M, Sagara M, Murakami S, Nara Y, Mizushima S (2009) Taurine as the nutritional factor for the longevity of the Japanese revealed by a world-wide epidemiological survey. Adv Exp Med Biol 643:13–25

    Article  CAS  Google Scholar 

  • Yatabe Y, Miyakawa S, Miyazaki T, Matsuzaki Y, Ochiai N (2003) Effects of taurine administration in rat skeletal muscles on exercise. J Orthop Sci 8:415–419

    Article  CAS  Google Scholar 

  • Yokogoshi H, Mochizuki H, Nanami K, Hida Y, Miyachi F, Oda H (1999) Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. J Nutr 129:1705–1712

    Article  CAS  Google Scholar 

  • Zhang M, Izumi I, Kagamimori S, Sokejima S, Yamagami T, Liu Z, Qi B (2004) Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids 26:203–207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science, and Technology (Grant number 2017R1D1AB03031409 and 2018R1D1A1B07048706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Soo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, K.S., Neog, M.K., Kim, J.Y., Yang, HI., Kim, K.S. (2019). Effects of Chronic Intake of a Low Concentration of Taurine on Physical Strength and Body Composition in Mice. In: Hu, J., Piao, F., Schaffer, S., El Idrissi, A., Wu, JY. (eds) Taurine 11. Advances in Experimental Medicine and Biology, vol 1155. Springer, Singapore. https://doi.org/10.1007/978-981-13-8023-5_3

Download citation

Publish with us

Policies and ethics