Skip to main content

Epigenetic Enzymes and Drawbacks of Conventional Therapeutic Regimens

  • Chapter
  • First Online:
Histone Deacetylase Inhibitors — Epidrugs for Neurological Disorders

Abstract

Post-translational modifications of histone proteins have noticeable role in passive chromatin remodelling. These modifications mainly include histone acetylation, methylation, phosphorylation etc. Methylation of DNA cytosine is also regarded as epigenetic modifications as it causes gene repression by recruiting HDACs. This chapter gives the bird’s eye view of writers and erasers of epigenetic modifications. Among the writers, special emphasis has been given to histone acetyl transferases, protein methyltransferases and DNA methyltransferases. Regarding erasers, histone deacetylases, demethylases and DNA demethylases are specially elaborated. Moreover, the current impediments in the therapeutic intervention of neurological disorders are also taken into account. Importantly, the drawbacks of traditional therapeutic regimens against the neurological complications will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhvaryu KK, Selker EU (2008) Protein phosphatase PP1 is required for normal DNA methylation in Neurospora. Genes Dev 22(24):3391–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black JC, Van Rechem C, Whetstine Johnathan R (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48(4):491–507

    Article  CAS  PubMed  Google Scholar 

  • Carey N, Marques CJ, Reik W (2011) DNA demethylases: a new epigenetic frontier in drug discovery. Drug Discov Today 16(15–16):683–690

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Wang KY, Shen CK (2013) DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. J Biol Chem 288(13):9084–9091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedoriw A, Mugford J, Magnuson T (2012) Genomic imprinting and epigenetic control of development. Cold Spring Harb Perspect Biol 4(7):a008136

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganai SA (2016a) Histone deacetylase inhibitor givinostat: the small-molecule with promising activity against therapeutically challenging haematological malignancies. J Chemother 28(4):247–254

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA (2016b) Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance. Pharm Biol 54(9):1926–1935

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA (2016c) Panobinostat: the small molecule Metalloenzyme inhibitor with marvelous anticancer activity. Curr Top Med Chem 16(4):427–434

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA, Kalladi SM, Mahadevan V (2015) HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J Biomol Struct Dyn 33(6):1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280(14):13341–13348

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, Zhang X, Cheng X (2012) Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40(11):4841–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herz HM, Garruss A, Shilatifard A (2013) SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 38(12):621–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K, Bishop DK, Grushcow JM, Brame CJ, Caldwell JA, Hunt DF, Lin R, Smith MM, Allis CD (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102(3):279–291

    Article  CAS  PubMed  Google Scholar 

  • Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD (2000) The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10(10):429–439

    Article  CAS  PubMed  Google Scholar 

  • Jin B, Robertson KD (2013) DNA methyltransferases (DNMTs), DNA damage repair, and cancer. Adv Exp Med Biol 754:3–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191

    Article  CAS  PubMed  Google Scholar 

  • Kanwar JR, Sriramoju B, Kanwar RK (2012) Neurological disorders and therapeutics targeted to surmount the blood–brain barrier. Int J Nanomedicine 7:3259–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmodiya K, Anamika K, Muley V, Pradhan SJ, Bhide Y, Galande S (2014) Camello, a novel family of Histone Acetyltransferases that acetylate histone H4 and is essential for zebrafish development. Sci Rep 4:6076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116(2):259–272

    Article  CAS  PubMed  Google Scholar 

  • Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502(7472):472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota T, Miyake K, Hirasawa T (2012) Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics. Clin Epigenetics 4(1):1–1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legube G, Trouche D (2003) Regulating histone acetyltransferases and deacetylases. EMBO Rep 4(10):944–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Du Y, Wang L, Huang L, Li W, Lu M, Zhang X, Zhu WG (2012) Characterization and prediction of lysine (K)-acetyl-transferase specific acetylation sites. Mol Cell Proteomics 11(1):30

    Article  Google Scholar 

  • Lorenzo AD, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031

    Article  PubMed  Google Scholar 

  • Min J, Feng Q, Li Z, Zhang Y, Xu RM (2003) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112(5):711–723

    Article  CAS  PubMed  Google Scholar 

  • Morera L, Lübbert M, Jung M (2016) Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 8:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19(3):219–220

    Article  CAS  PubMed  Google Scholar 

  • Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, Rath SK, Patra SK (2014) Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem 62(1):11–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Passmore LA, Barford D (2004) Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J 379. (Pt 3:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen MT, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20(11):662–671

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Parthun MR (2002) Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 22(23):8353–8365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen KD, Helin K (2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30(7):733–750. https://doi.org/10.1101/gad.276568.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    Article  CAS  PubMed  Google Scholar 

  • Rhee I, Jair KW, Yen RW, Lengauer C, Herman JG, Kinzler KW, Vogelstein B, Baylin SB, Schuebel KE (2000) CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404(6781):1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Richman R, Chicoine LG, Collini MP, Cook RG, Allis CD (1988) Micronuclei and the cytoplasm of growing Tetrahymena contain a histone acetylase activity which is highly specific for free histone H4. J Cell Biol 106(4):1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, Jones PA (1999) The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27(11):2291–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sara B, Rupinder Kaur K, Khashayar K, Punj V, Chauhan A, Matta H, Andrew P, Subramanian K, Xueying S, Sanjeeb KS, Jagat Rakesh K (2009) Promises of nanotechnology for drug delivery to brain in neurodegenerative diseases. Curr Nanosci 5(1):15–25

    Article  Google Scholar 

  • Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp AJ, Stathaki E, Migliavacca E, Brahmachary M, Montgomery SB, Dupre Y, Antonarakis SE (2011) DNA methylation profiles of human active and inactive X chromosomes. Genome Res 21(10):1592–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonato M, Bennett J, Boulis NM, Castro MG, Fink DJ, Goins WF, Gray SJ, Lowenstein PR, Vandenberghe LH, Wilson TJ, Wolfe JH, Glorioso JC (2013) Progress in gene therapy for neurological disorders. Nat Rev Neurol 9(5):277–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertino PM, Yen RW, Gao J, Baylin SB (1996) De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol 16(8):4555–4565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29(6):653–663

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Bedford MT (2012) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13:37

    Article  CAS  PubMed  Google Scholar 

  • Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26:5310

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganai, S.A. (2019). Epigenetic Enzymes and Drawbacks of Conventional Therapeutic Regimens. In: Histone Deacetylase Inhibitors — Epidrugs for Neurological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-13-8019-8_2

Download citation

Publish with us

Policies and ethics