Skip to main content

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

  • 515 Accesses

Abstract

The Sun is our nearest star and the energy released by nuclear reactions near its center is transported by photons inside the inner \({\sim }71\%\) of the solar radius (\(R_\odot \simeq 6.9\times 10^5\) km), called the radiative zone. Outside this radiative zone, called the convective zone, photons are no longer able to transfer energy efficiently, so convective instabilities set in and vertical flows carry nearly all the excess heat to the solar surface. This visible surface, called the photosphere, is the lowest layer of the solar outer atmosphere, emits almost all the solar light, and lowers its temperature by the radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelatif, T. E. (1987). Heating of coronal loops by phase-mixid shear Alfvén waves. The Astrophysical Journal, 322, 494–502.

    Article  ADS  Google Scholar 

  • Ahmad, I. A., & Withbroe, G. L. (1977). EUV analysis of polar plumes. Solar Physics, 53, 397–408.

    Article  ADS  Google Scholar 

  • Alfvén, H. (1947). Granulation, magneto-hydrodynamic waves and the heating of the solar corona. Monthly Notices of the Royal Astronomical Society, 107, 211–219.

    Article  ADS  Google Scholar 

  • Alfvén, H., & Carlqvist, P. (1967). Currents in the solar atmosphere and a theory of solar flares. Solar Physics, 1, 220.

    Article  ADS  Google Scholar 

  • Andries, J., & Goossens, M. (2001). Kelvin-Helmholtz instabilities and resonant flow instabilities for a coronal plume model with plasma pressure. Astronomy & Astrophysics, 368, 1083–1094.

    Article  ADS  MATH  Google Scholar 

  • Andries, J., Tirry, W. J., & Goossens, M. (2000). Modified Kelvin-Helmholtz instabilities and resonant flow instabilities in a one-dimensional coronal plume model: Results for plasma \(\beta =0\). The Astrophysical Journal, 531, 561–570.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, A. D. (1999). Coronal loop oscillations observed with the transition region and coronal explorer. The Astrophysical Journal, 520, 880–894.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Poland, A. I., & Rabin, D. M. (2001). The new solar corona. Annual Review of Astronomy and Astrophysics, 39, 175–210.

    Article  ADS  Google Scholar 

  • Aulanier, G., Golub, L., Deluca, E. E., et al. (2007). Slipping magnetic reconnection in coronal loops. Science, 318, 1588–1591.

    Article  ADS  Google Scholar 

  • Aurass, H., & Kliem, B. (1992). Fiber bursts in type IV DM radio continua as a signature of coronal current sheet dynamics. Solar Physics, 141, 371–379.

    Article  ADS  Google Scholar 

  • Avrett, E. H. (1981). Reference model atmospheric calculation-The sunspot sunspot model. In Cram & Thomas, (Ed.), The Physics of Sunspots (pp. 235–255). New Mexico: Sacramento Peak Observatory.

    Google Scholar 

  • Beaufume, P., Coppi, B., & Golub, L. (1992). Coronal loops-current-based heating processes. The Astrophysical Journal, 393, 396–408.

    Article  ADS  Google Scholar 

  • Belcher, J. W., & Davis, L. (1971). Large-amplitude Alfvén wave in the interplanetary medium. Journal of Geophysical Research, 76, 3534–3563.

    Article  ADS  Google Scholar 

  • Bellan, P. M., & Stasiewicz, K. (1998). Fine-scale cavitation of ionospheric plasma caused by inertial Alfvén wave ponderomoive force. Physical Review Letters, 80, 3523–3526.

    Article  ADS  Google Scholar 

  • Benz, A. O. (1986). Millisecond radio spikes. Solar Physics, 104, 99–110.

    Article  ADS  Google Scholar 

  • Benz, A. O. (2002). Plasma astrophysics, astrophysics and space science library (2nd ed., p. 279). Dordrecht: Kluwer.

    Google Scholar 

  • Benz, A. O., & Mann, G. (1998). Intermediate drift bursts and the coronal magnetic field. Astronomy and Astrophysics, 333, 1034–1042.

    ADS  Google Scholar 

  • Bernold, T. X., & Treumann, R. A. (1983). The fiber fine structure during solar type IV radio bursts: Observations and theory of radiation in presence of localized whistler turbulence. The Astrophysical Journal, 264, 677–688.

    Article  ADS  Google Scholar 

  • Bohlin, J. D., Sheeley, N. R., & Tousey, R. (1975). Structure of the sun’s polar cap at wavelength 240–600 Å. In Space Research XV (pp. 651–656).

    Google Scholar 

  • Boldyrev, S. (2005). On the spectrum of magnetohydrodynamic turbulence. The Astrophysical Journal Letters, 626, L37.

    Article  ADS  Google Scholar 

  • Borovsky, J. E., & Denton, M. H. (2011). No evidence for heating of the solar wind at strong current sheets. The Astrophysical Journal Letters, 739, L61.

    Article  ADS  Google Scholar 

  • Borovsky, J. E. & Suszcynsky, D. M. (2013), Optical measurements of the fine structure of auroral arcs. In Lysak, R. L. (ed.), Auroral Plasma Dynamics. Geophysical Monograph Series (vol. 80, pp. 25–30), Washington, D. C.

    Google Scholar 

  • Bray, R. J., Cram, L. E., Durrant, C. J., & Loughhead, R. E. (1991). Plasma loops in the solar corona. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Browning, P. K., & Priest, E. R. (1984). Kelvin-Helmholtz instability of a phased-mixed Alfvén wave. Astronomy and Astrophysics, 131, 283–290.

    ADS  MathSciNet  Google Scholar 

  • Canfield, R. C., de La Beaujardiere, J.-F., Fan, Y. H., et al. (1993). The morphology of flare phenomena, magnetic fields, and electric currents in active regions. I-Introduction and methods. The Astrophysical Journal, 411, 362–369.

    Article  ADS  Google Scholar 

  • Carlsson, M., & Stein, R. F. (1992). Non-LTE radiating acoustic shocks and CA II K2V bright points. The Astrophysical Journal, 397, L59–L62.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Bonnell, J. W., Carlson, C. W., et al. (2003). Properties of small-scale Alfvén waves and accelerated electrons from FAST. Journal of Geophysical Research: Space Physics, 108, 8003–8019.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Bonnell, J. W., Carlson, C. W., et al. (2004). Auroral ion acceleration in dispersive Alfvén waves. Journal of Geophysical Research: Space Physics, 109, A04205.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Peticolas, L. M., Carlson, C. W., et al. (2005). Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations. Journal of Geophysical Research: Space Physics, 110, A02211.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Carlson, C. W., Peria, W. J., et al. (1999). FAST observations of inertial Alfvén waves in the dayside aurora. Geophysical Research Letters, 26, 647–650.

    Article  ADS  Google Scholar 

  • Chen, L., & Wu, D. J. (2012). Kinetic Alfvén wave instability driven by field-aligned currents in solar coronal loops. The Astrophysical Journal, 754, 123.

    Article  ADS  Google Scholar 

  • Chen, L., Wu, D. J., & Hua, Y. P. (2011). Kinetic Alfvén wave instability driven by a field-aligned current in high-\(\beta \) plasmas. Physical Review E, 84, 046406.

    Article  ADS  Google Scholar 

  • Chen, L., Wu, D. J., & Huang, J. (2013). Kinetic Alfvén wave instability driven by field-aligned currents in a low-\(\beta \) plasma. Journal of Geophysical Research: Space Physics, 118, 2951.

    ADS  Google Scholar 

  • Chen, L., Wu, D. J., Zhao, G. Q., et al. (2014). Excitation of kinetic Alfvén waves by fast electron beams. The Astrophysical Journal, 793, 13.

    Article  ADS  Google Scholar 

  • Chen, L., Wu, D. J., Zhao, G. Q., et al. (2015). A possible mechanism for the formation of filamentous structures in magnetoplasmas by kinetic Alfvén waves. Journal of Geophysical Research: Space Physics, 120, 61–69.

    ADS  Google Scholar 

  • Chen, Y. P., Zhou, G. C., Yoon, P. H., & Wu, C. S. (2002). A beam-maser instability: Direct amplification of radiation. Physics of Plasmas, 9, 2816–2821.

    Article  ADS  Google Scholar 

  • Chin, Y. C., & Wentzel, D. G. (1972). Nonlinear dissipation of Alfvén waves. Astrophysics and Space Science, 16, 465–477.

    Article  ADS  Google Scholar 

  • Cho, J., & Vishniac, E. T. (2000). The anisotropy of MHD Alfvénic turbulence. The Astrophysical Journal, 539, 273–282.

    Article  ADS  Google Scholar 

  • Cho, J., Lazarian, A., & Vishniac, E. T. (2002). Simulation of magnetohydrodynamic turbulence in a strong magnetized medium. The Astrophysical Journal, 564, 291–301.

    Article  ADS  Google Scholar 

  • Cirtain, J., Golub, L., Lundquist, L., et al. (2007). Evidence for Alfvén waves in solar X-ray jets. Science, 318, 1580–1582.

    Article  ADS  Google Scholar 

  • Coburn, J. T., Smith, C. W., Vasquez, B. J., et al. (2012). The turbulent cascade and proton heating in the solar wind during solar minimum. The Astrophysical Journal, 754.

    Google Scholar 

  • Coleman, P. J. (1966). Variations in the interplanetary magnetic field: Mariner 2: 1. Observed properties. Journal of Geophysical Research, 71, 5509–5531.

    Article  ADS  Google Scholar 

  • Coleman, P. J. (1968). Turbulence, viscossity, and dissipation in the solar wind plasma. The Astrophysical Journal, 153, 371–388.

    Article  ADS  Google Scholar 

  • Cowling, T. G. (1958). Solar electrodynamics. Proceedings of the International Astronomical Union, 6, 105.

    Article  ADS  Google Scholar 

  • Cranmer, S. R. (2009). Coronal holes. Living Reviews in Solar Physics, 6(3), 1–64.

    ADS  Google Scholar 

  • Cranmer, S. R., & van Ballegooijen, A. A. (2005). On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. The Astrophysical Journal Supplement Series, 156, 265–293.

    Article  ADS  Google Scholar 

  • Cranmer, S. R., Field, G. B., & Kohl, J. L. (1999). Spectroscopic constraints on models of ion cyclotron resonance heating in the polar solar corona and high-speed solar wind. The Astrophysical Journal, 518, 937–947.

    Article  ADS  Google Scholar 

  • Dabrowski, B. P., Rudawy, P., Falewicz, R., et al. (2005). Millisecond radio spikes in decimetre band and their related active solar phenomena. Astronomy & Astrophysics, 434, 1139–1153.

    Article  ADS  Google Scholar 

  • De Forest, C. E., Hoeksema, J. T., Gurman, J. B., et al. (1997). Polar plume anatomy: Results of a coordinated observation. Solar Physics, 175, 393–410.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Martens, P. C. H., & Hudson, H. S. (2001). Chromospheric damping of Alfvén waves. The Astrophysical Journal, 558, 859–871.

    Article  ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S., Carlsson, M., et al. (2007). Chromospheric Alfvénic waves strong enough to power the solar wind. Science, 318, 1574–1577.

    Article  ADS  Google Scholar 

  • de Wijn, A. G., Stenflo, J. O., Solanki, S. K., & Tsuneta, S. (2009). Small-scale solar magnetic fields. Space Science Reviews, 144, 275–315.

    Article  ADS  Google Scholar 

  • Del Sarto, D., Califano, F., & Pegoraro, F. (2006). Electron parallel compressibility in the nonlinear development of two-dimensional collisionless magnetohydrodynamic reconnection. Modern Physics Letters B, 20, 931–961.

    Article  ADS  MATH  Google Scholar 

  • Del Zanna, L., Hood, A. W., & Longbottom, A. W. (1997). An MHD model for solar coronal plumes. Astronomy and Astrophysics, 318, 963–969.

    ADS  Google Scholar 

  • Ding, M. D., & Fang, C. (1989). A semi-empirical model of sunspot penumbra. Astronomy and Astrophysics, 225, 204–212.

    ADS  Google Scholar 

  • Ding, M. D., & Fang, C. (1991). A semi-empirical model of sunspot umbra. Chinese Astronomy and Astrophysics, 15, 28–36.

    Article  ADS  Google Scholar 

  • Edlén, B. (1941). An attemp to identify the emission lines in the spectrum of the solar corona. Arkiv för Matematik, Astronomi och Fysik, 28B, 1–4.

    Google Scholar 

  • Erdélyi, R., & Fedun, V. (2007). Are there Alfvén waves in the solar atmosphere? Science, 318, 1572–1574.

    Article  ADS  Google Scholar 

  • Esser, R., & Sasselov, D. (1999). On the disagreement between atmospheric and coronal electron densities. The Astrophysical Journal Letters, 521, L145–L148.

    Article  ADS  Google Scholar 

  • Esser, R., Fineschi, S., Dobrzycka, D., et al. (1999). Plasma properties in coronal holes drived from measurements of minor ion spectral lines and polarized white light intensity. The Astrophysical Journal, 510, L63–L67.

    Article  ADS  Google Scholar 

  • Fälthammar, C. G. (1995). In memoriam: Hannes Alfvén. Astrophysics and Space Science, 234, 173–175.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fang, C., Tang, Y. H., Ding, M. D., et al. (1997). Coronal loops above sunspot region. Solar Physics, 176, 267–277.

    Article  ADS  Google Scholar 

  • Fleishman, G. D. (2004). Natural spectral bandwidth of electron cyclotron maser emission. Astronomy Letters, 30, 603–614.

    Article  ADS  Google Scholar 

  • Fleishman, G. D., Gary, D. E., & Nita, G. M. (2003). Decimetric spike bursts versus microwave continuum. The Astrophysical Journal, 593, 571–580.

    Article  ADS  Google Scholar 

  • Fossum, A., & Carlsson, M. (2005). High-frequency acoustic waves are not sufficient to heat the solar chromosphere. Nature, 435, 919–921.

    Article  ADS  Google Scholar 

  • Fried, B. D., & Conte, S. D. (1961). The plasma dispersion function. New York: Academic Press.

    Google Scholar 

  • Fu, Q. J., Qin, Z. H., Ji, H. R., & Pei, L. B. (1995). A broadband spectrometer for decimeter and microwave radio bursts. Solar Physics, 160, 97–103.

    Article  ADS  Google Scholar 

  • Gan, W. Q., & Fang, C. (1990). A hydrodynamic model of the gradual phase of the solar flare loop. The Astrophysical Journal, 358, 328–337.

    Article  ADS  Google Scholar 

  • Gary, G. A., & Demoulin, P. (1995). Reduction, analysis, and properties of electric current systems in solar active regions. The Astrophysical Journal, 445, 982.

    Article  ADS  Google Scholar 

  • Gazis, P. R. (1984). Observations of plasma bulk parameters and the energy balance of the solar wind between 1 and 10 AU. Journal of Geophysical Research: Space Physics, 89, 775–785.

    Article  Google Scholar 

  • Gazis, P. R., & Lazarus, A. J. (1982). Voyager observations of solar wind proton temperature: 1–10 AU. Geophysical Research Letters, 9, 431–434.

    Article  ADS  Google Scholar 

  • Gekelman, W. (1999). Review of laboratory experiments on Alfvén waves and their relationship to space observations. Journal of Geophysical Research: Space Physics, 104, 14417–14435.

    Article  Google Scholar 

  • Goldreich, P., & Sridhar, S. (1995). Towards a theory of interstellar turbulence. II. Strong Alfvénic turbulence. The Astrophysical Journal, 438, 763–775.

    Article  ADS  Google Scholar 

  • Goldreich, P., & Sridhar, S. (1997). Magnetohydrodynamic turbulence revisited. The Astrophysical Journal, 485, 680–688.

    Article  ADS  Google Scholar 

  • Goldstein, B. E., & Jokipii, J. R. (1977). Variation of solar wind parameters. Journal of Geophysical Research, 82, 1095.

    Article  ADS  Google Scholar 

  • Goldstein, M. L., Wicks, R. T., Perri, S., & Sahraoui, F. (2015). Kinetic scale turbulence and dissipation in the solar wind: Key observational results and future outlook. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 20140147.

    Article  ADS  Google Scholar 

  • Golub, L., & Pasachoff, J. M. (1997). The solar corona. Cambridge: Cambridge University.

    Google Scholar 

  • Golub, L., Herant, M., Kalata, K., et al. (1990). Sub-arcsecond observations of the solar X-ray corona. Nature, 344, 842–844.

    Article  ADS  Google Scholar 

  • Goodman, M. L. (2004). On the creation of the chromospheres of solar type stars. Astronomy & Astrophysics, 424, 691–712.

    Article  ADS  MATH  Google Scholar 

  • Habbal, S. R., Leer, E., & Holzer, T. E. (1979). Heating of coronal loops by fast mode MHD waves. Solar Physics, 64, 287–301.

    Article  ADS  Google Scholar 

  • Hagyard, M. J. (1989). Observed nonpotential magnetic fields and the inferred flow of electric currents at a location of repeated flaring. Solar Physics, 115, 107–124.

    Article  ADS  Google Scholar 

  • Hallinan, T. J., & Davis, T. N. (1970). Small-scale auroral arc distortions. Planetary and Space Science, 18, 1735–1736.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Chen, L. (1975). Kinetic process of plasma heating due to Alfvén wave excitation. Physical Review Letters, 35, 370–373.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Chen, L. (1976). Kinetic process of plasma heating by resonant mode conversion of Alfvén wave. The Physics of Fluids, 19, 1924–1934.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Mima, K. (1976). Exact solitary Alfvén wave. Physical Review Letters, 37, 690–693.

    Article  ADS  Google Scholar 

  • Hasegawa, A. & Sato, T. (1989). Space plasma physics: I-stationary processes. Physics and Chemistry in Space (Vol. 16, pp. 181). Berlin: Springer.

    Google Scholar 

  • Hasegawa, A., & Uberoi, C. (1982). The Alfvén waves. Technical Information Center, US Department of Energy: Oak Ridge.

    Google Scholar 

  • Hassler, D. M., Rottman, G. J., Shoub, E. C., & Holzer, T. E. (1990). Line broadening of MG X 609 and 625 A coronal emission lines observed above the solar limb. The Astrophysical Journal Letter, 348, L77–L80.

    Article  ADS  Google Scholar 

  • Heyvaerts, J., & Priest, E. R. (1983). Coronal heating by phase-mixed shear Alfvén waves. Astronomy and Astrophysics, 117, 220–234.

    ADS  MATH  Google Scholar 

  • Hollweg, J. V. (1971). Nonlinear landau damping of Alfvén waves. Physical Review Letters, 27, 1349–1352.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1974). On electron heat conduction in the solar wind. Journal of Geophysical Research, 79, 3845–3850.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1976). Collisionless electron heat conduction in the solar wind. Journal of Geophysical Research, 81, 1649–1658.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1978). Alfvén waves in the solar atmosphere. Solar Physics, 56, 305–333.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1981). Alfvén waves in the solar atmosphere. II-Open and closed magnetic flux tubes. Solar Physics, 70, 25–66.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1984). Alfvénic resonant cavities in the solar atmosphere: Simple aspects. Solar Physics, 91, 269–288.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. (1987). Resonance absorption of magnetohydrodynamic surface waves physical discussion. The Astrophysical Journal, 312, 880–885.

    Article  ADS  Google Scholar 

  • Horbury, T. S., Forman, M., & Oughton, S. (2008). Anisotropic scaling of magnetohydrodynamic turbulence. Physical Review Letters, 101, 175005.

    Article  ADS  Google Scholar 

  • Howes, G. G., Cowley, S. C., Dorland, W., et al. (2006). Astrophysical gyrokinetics: Basic equations and linear theory. The Astrophysical Journal, 651, 590–614.

    Article  ADS  Google Scholar 

  • Hu, Y. Q., & Habbal, S. R. (1999). Resonant acceleration and heating of solar wind ions by dispersive ion cyclotron waves. Journal of Geophysical Research: Space Physics, 104, 17045–17056.

    Article  Google Scholar 

  • Hu, Y. Q., Esser, R., & Habbal, S. R. (1997). A fast solar wind model with anisotropic proton temperature. Journal of Geophysical Research: Space Physics, 102, 14661–14676.

    Article  Google Scholar 

  • Hu, Y. Q., Esser, R., & Habbal, S. R. (2000). A four-fluid turbulence-driven solar wind model for preferential acceleration and heating of heavy ions. Journal of Geophysical Research: Space Physics, 105, 5093–5111.

    Article  Google Scholar 

  • Huang, G. L., Wang, D. Y., Wu, D. J., et al. (1997). The eigenmode of solitary kinetic Alfvén waves by Freja satellite. Journal of Geophysical Research: Space Physics, 102, 7217–7224.

    Article  Google Scholar 

  • Ichimoto, K., Suematsu, Y., Tsuneta, S., et al. (2007). Twisting motions of sunspot penumbral filaments. Science, 318, 1597–1599.

    Article  ADS  Google Scholar 

  • Ionson, J. A. (1978). Resonant absorption of Alfvénic surface waves and the heating of solar coronal loops. The Astrophysical Journal, 226, 650–673.

    Article  ADS  Google Scholar 

  • Isenberg, P. A., & Vasquez, B. J. (2007). Preferential perpendicular heating of coronal hole minor ions by the Fermi mechanism. The Astrophysical Journal, 668, 546–556.

    Article  ADS  Google Scholar 

  • Jefferies, S. M., McIntosh, S. W., Armstrong, J. D., et al. (2006). Magnetoacoustic portals and the basal heating of the solar chromosphere. The Astrophysical Journal, 648, L151–L155.

    Article  ADS  Google Scholar 

  • Kano, R., & Tsuneta, S. (1995). Scaling law of solar coronal loops obtained with YOHKOH. The Astrophysical Journal, 454, 934–944.

    Article  ADS  Google Scholar 

  • Kano, R., & Tsuneta, S. (1996). Temperature distributions and energy scaling law of solar coronal loops obtained with YOHKOH. Publications of the Astronomical Society of Japan, 48, 535–543.

    Article  ADS  Google Scholar 

  • Katsukawa, Y., Berger, T. E., Ichimoto, K., et al. (2007). Small-scale jetlike features in penumbral chromospheres. Science, 318, 1594–1597.

    Article  ADS  Google Scholar 

  • Khodachenko, M. L., Zaitsev, V. V., Kislyakov, A. G., & Stepanov, A. V. (2009). Equivalent electric circuit models of coronal magnetic loops and related oscillatory phenomena on the sun. Space Science Reviews, 149, 83.

    Article  ADS  Google Scholar 

  • Kohl, J. K., Noci, G., Antonucci, E., et al. (1997). First results from the SOHO ultravoilet coronagraph spectrometer. Solar Physics, 175, 613–644.

    Article  ADS  Google Scholar 

  • Kohl, J. L., Noci, G., Antonucci, E., et al. (1998). UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona. The Astrophysical Journal Letters, 501, L127–L131.

    Article  ADS  Google Scholar 

  • Kolmogorov, A. N. (1941). The local structure turbulence in incompressible viscous fluids for very large Reynolds numbers, Dokl. Akad. Nauk. SSSR 30, 301–305. Reprinted in 1991. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 434, 9–13.

    Google Scholar 

  • Koutchmy, S. (1977). Study of the June 30, 1973 trans-polar coronal hole. Solar Physics, 51, 399–407.

    Article  ADS  Google Scholar 

  • Leamon, R. J., Ness, N. F., Smith, C. W., & Wong, H. K. (1999). Dynamics of the dissipation range for solar wind magnetic fluctuations. AIP Conference Proceedings, 471, 469.

    Article  ADS  Google Scholar 

  • Leamon, R. J., Smith, C. W., Ness, N. F., et al. (1998). Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. Journal of Geophysical Research: Space Physics, 103, 4775–4787.

    Article  Google Scholar 

  • Leblanc, Y., Dulk, G., & Bougeret, J. (1998). Tracing the electron density from the corona to 1 AU. Solar Physics, 183, 165–180.

    Article  ADS  Google Scholar 

  • Lee, J., McClymont, A. N., Mikić, Z., et al. (1998). Coronal currents, magnetic fields, and heating in a solar active region. The Astrophysical Journal, 501, 853.

    Article  ADS  Google Scholar 

  • Lee, L. C., & Wu, B. H. (2000). Heating and acceleration of protons and minor ions by fast shocks in the solar corona. The Astrophysical Journal, 535, 1014–1026.

    Article  ADS  Google Scholar 

  • Lee, M. A., & Roberts, B. (1986). On the behavior of hydromagnetic surface waves. The Astrophysical Journal, 301, 430–439.

    Article  ADS  Google Scholar 

  • Louarn, P., Wahlund, J. E., Chust, T., et al. (1994). Observations of kinetic Alfvén waves by the Freja spacecraft. Geophysical Research Letters, 21, 1847–1850.

    Article  ADS  Google Scholar 

  • Luo, Q. Y., & Wu, D. J. (2010). Observations of anisotropic scaling of solar wind turbulence. The Astrophysical Journal Letters, 714, L138–L141.

    Article  ADS  Google Scholar 

  • MacBride, B. T., Smith, C. W., & Forman, M. A. (2008). The turbulent cascade at 1 AU: Energy transfer and the third-order scaling for MHD. The Astrophysical Journal, 679, 1644.

    Article  ADS  Google Scholar 

  • Maggs, J. E., & Morales, G. J. (1996). Magnetic fluctuations associated field-aligned striations. Geophysical Research Letters, 23, 633–636.

    Article  ADS  Google Scholar 

  • Maggs, J. E., & Morales, G. J. (1997). Fluctuations associated a filamentary density depletion. Physics of Plasmas, 4, 290–299.

    Article  ADS  Google Scholar 

  • Malovichko, P. P. (2008). Stability of magnetic configurations in the solar atmosphere under temperature anisotropy conditions. Kinematics and Physics of Celestial Bodies, 24, 236–241.

    Article  ADS  Google Scholar 

  • Maltby, P., Avrett, E. H., Carlsson, M., et al. (1986). A new sunspot umbral model and its variation with the solar cycle. The Astrophysical Journal, 306, 284–303.

    Article  ADS  Google Scholar 

  • Mariani, F., & Neubauer, F. M. (1990). The interplanetary magnetic field. In Schwenn & Marsch (Ed.), Physics of the Inner Heliosphere (pp. 183–206). New York: Springer.

    Google Scholar 

  • Markovskii, S. A., Vasquez, B. J., & Hollweg, J. V. (2009). Proton heating by nonlinear field-aligned Alfvén waves in solar coronal holes. The Astrophysical Journal, 695, 1413–1420.

    Article  ADS  Google Scholar 

  • Markovskii, S. A., Vasquez, B. J., & Smith, C. W. (2008). Statistical analysis of the high-frequency spectral break of the solar wind turbulence at 1 AU. The Astrophysical Journal, 675, 1576–1583.

    Article  ADS  Google Scholar 

  • Marsch, E. (2006). Kinetic physics of the solar corona and solar wind. Living Reviews in Solar Physics, 3(1), 1–100.

    ADS  Google Scholar 

  • Marsch, E., Rosenbauer, H., & Schwenn, R. (1983). On the equation of state of solar wind ions derived from Helios measurements. Journal of Geophysical Research: Space Physics, 88, 2982–2992.

    Article  Google Scholar 

  • Maron, J., & Goldreich, P. (2001). Simulations of incompressible magnetohydrodynamic turbulence. The Astrophysical Journal, 554, 1175–1196.

    Article  ADS  Google Scholar 

  • Martens, P. C. H., Van Den Oord, G. H. J., & Hoyng, P. (1985). Observations of steady anomalous magnetic heating in thin current sheets. Solar Physics, 96, 253–275.

    Article  ADS  Google Scholar 

  • Matthaeus, W. H., & Goldstein, M. L. (1982). Stationarity of magnetaohydrodynamic fluctuations in the solar wind. Journal of Geophysical Research: Space Physics, 87, 10347–10354.

    Article  Google Scholar 

  • Matthaeus, W. H., Wan, M., Servidio, S., et al. (2015). Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 20140154.

    Article  ADS  Google Scholar 

  • McClymont, A. N., & Canfield, R. C. (1983). Flare loop radiative hydrodynamics-Part two-Thermal stability of empirical models. The Astrophysical Journal, 265, 497–506.

    Article  ADS  Google Scholar 

  • Mcfadden, J. P., Carlson, C. W., & Boehm, M. H. (1990). Structure of an energetic narrow discrete arc. Journal of Geophysical Research: Space Physics, 95, 6533–6547.

    Article  Google Scholar 

  • Melrose, D. B. (1991). Neutralized and unneutralized current patterns in the solar corona. The Astrophysical Journal, 381, 306–312.

    Article  ADS  Google Scholar 

  • Messmer, P., & Benz, A. O. (2000). The minimum bandwidth of narrowband spikes in solar flare decimetric radio waves. Astronomy & Astrophysics, 354, 287–295.

    ADS  Google Scholar 

  • Müller, W. C., Biskamp, D., & Grappin, R. (2003). Statistical anisotropy of magnetohydrodynamic turbulence. Physical Review E, 67, 066302.

    Article  ADS  MathSciNet  Google Scholar 

  • Nagai, F. (1980). A model of hot loops associated with solar flares I-Gasdynamics in the loops. Solar Physics, 68, 351–379.

    Article  ADS  Google Scholar 

  • Nakariakov, V. M., & Ofman, L. (2001). Determination of the coronal magnetic field by coronal loop oscillations. Astronomy & Astrophysics, 372, L53–L56.

    Article  ADS  Google Scholar 

  • Narain, U., & Ulmschneider, P. (1990). Chromospheric and coronal heating mechanisms. Space Science Reviews, 54, 377–445.

    Article  ADS  Google Scholar 

  • Narain, U., & Ulmschneider, P. (1996). Chromospheric and coronal heating mechanisms II. Space Science Reviews, 75, 453–509.

    Article  ADS  Google Scholar 

  • Newkirk, G., & Harvey, J. (1968). Coronal polar plumes. Solar Physics, 3, 321–343.

    Article  ADS  Google Scholar 

  • Noyes, R. W., & Avrett, E. H. (1987). The solar chromosphere. In Dalgarno & Layzer (Eds.), Spectroscopy of astrophysical plasmas (p. 125). Cambridge: Canbridge University Press.

    Google Scholar 

  • Ofman, L. (2010). Wave modeling of the solar wind. Living Reviews in Solar Physics, 7, 1–48.

    Article  ADS  Google Scholar 

  • Ofman, L., Gary, S. P., & Viñas, A. (2002). Resonant heating and acceleration of ions in coronal holes driven by cyclotron resonant spectra. Journal of Geophysical Research: Space Physics, 107, 1461–1470.

    Article  ADS  Google Scholar 

  • Okamoto, T., Tsuneta, S., Berger, T., et al. (2007). Coronal transverse magnetohydrodynamic waves in a solar prominence. Science, 318, 1577–1580.

    Article  ADS  Google Scholar 

  • Osman, K. T., Matthaeus, W. H., Greco, A., & Servidio, S. (2011). Evidence for inhomogeneous heating in the solar wind. The Astrophysical Journal Letters, 727, L11.

    Article  ADS  Google Scholar 

  • Osterbrock, D. E. (1961). The heating of the solar chromosphere, plages, and corona by magnetohydrodynamic waves. The Astrophysical Journal, 134, 347.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1958). Dynamics of the interplanetary gas and magnetic fields. The Astrophysical Journal, 128, 664–676.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1979). Cosmical magnetic fields: Their origin and their activity. Oxford: Clarendon Press.

    Google Scholar 

  • Parker, E. N. (1983). Magnetic neutral sheets in evolving fields-part two-formation of the solar corona. The Astrophysical Journal, 264, 642–647.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1988). Nanoflares and the solar X-ray corona. The Astrophysical Journal, 330, 474–479.

    Article  ADS  Google Scholar 

  • Pesnell, W. D. (2012). The solar dynamics observatory (SDO). Solar Physics, 275, 3–15.

    Article  ADS  Google Scholar 

  • Piddington, J. H. (1956). Solar atmospheric heating by hydromagnetic waves. Monthly Notices of the Royal Astronomical Society, 116, 314.

    Article  ADS  MathSciNet  Google Scholar 

  • Podesta, J. J. (2009). Dependence of solar-wind power spectra on the direction of the local mean magnetic field. The Astrophysical Journal, 698, 986–999.

    Article  ADS  Google Scholar 

  • Podesta, J. J. (2010). Comment on “Turbulent cascade at 1 AU in high cross-helicity flows”. Physical Review Letters, 104, 169001.

    Article  ADS  Google Scholar 

  • Podesta, J. J., Forman, M. A., Smith, C. W., et al. (2009). Accurate estimation of third-order moments from turbulence measurements. Nonlinear Processes in Geophysics, 16, 99–110.

    Article  ADS  Google Scholar 

  • Porter, L. J., & Klimchuk, J. A. (1995). Soft X-ray loops and coronal heating. The Astrophysical Journal, 454, 499–511.

    Article  ADS  Google Scholar 

  • Rabin, D., & Moore, R. (1984). Heating the sun’s lower transition region with fine-scale electric currents. The Astrophysical Journal, 285, 359–367.

    Article  ADS  Google Scholar 

  • Reale, F., Parenti, S., Reeves, K. K., et al. (2007). Fine thermal structure of a coronal active region. Science, 318, 1582–1585.

    Article  ADS  Google Scholar 

  • Reames, D. V. (1994). Coronal element abundances derived from solar energetic particles. Advances in Space Research, 14, 177–180.

    Article  ADS  Google Scholar 

  • Roberts, D. A., Goldstein, M. L., Klein, L. W., & Mathaeus, W. H. (1987a). Origin and evolution of fluctuations in the solar wind: Helios observations and Helios-Voyager comparisons. Journal of Geophysical Research: Space Physics, 92, 12023–12035.

    Article  Google Scholar 

  • Roberts, D. A., Klein, L. W., Goldstein, M. L., & Mathaeus, W. H. (1987b). The nature and the evolution of magnetohydrodynamic fluctuations in the solar wind: Voyager observations. Journal of Geophysical Research: Space Physics, 92, 11021–11040.

    Article  Google Scholar 

  • Rosner, R., Golub, L., Coppi, B., & Vaiana, G. S. (1978). Heating of coronal plasma by anomalous current dissipation. The Astrophysical Journal, 222, 317–332.

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M. L., Belmont, G., et al. (2010). Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Physical Review Letters, 105, 131101.

    Article  ADS  Google Scholar 

  • Saito, K. (1958). Polar rays of the solar corona. Publications of the Astronomical Society of Japan, 10, 49–78.

    ADS  Google Scholar 

  • Saito, K. (1965). Polar rays of the solar corona. II. Publications of the Astronomical Society of Japan, 17, 1–26.

    ADS  Google Scholar 

  • Sakao, T., Kano, R., Narukage, N., et al. (2007). Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science, 318, 1585–1588.

    Article  ADS  Google Scholar 

  • Schekochihin, A. A., Cowley, S. C., Dorland, W., et al. (2009). Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. The Astrophysical Journal Supplement, 182, 310–377.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., & Zwaan, C. (2001). Solar and stellar magnetic activity: The solar dynamo. Physics Today, 54, 54–56.

    Google Scholar 

  • Schrijver, C. J., Title, A. M., Berger, T. E., et al. (1999). A new view of the solar outer atmosphere by the transition region and coronal explorer. Solar Physics, 187, 261–302.

    Article  ADS  Google Scholar 

  • Schwartz, S. J., Cally, P. S., & Bel, N. (1984). Chromospheric and coronal Alfvénic oscillations in non-vertical magnetic fields. Solar Physics, 92, 81–98.

    Article  ADS  Google Scholar 

  • Severny, A. (1964). Solar magnetic fields. Space Science Reviews, 3, 451–486.

    Article  ADS  Google Scholar 

  • Shibata, K., Nakamura, T., Matsumoto, T., et al. (2007). Chromospheric anemone jets as evidence of ubiquitous reconnection. Science, 318, 1591–1594.

    Article  ADS  Google Scholar 

  • Shukla, A., & Sharma, R. P. (2001). Transient filaments formation by nonlinear kinetic Alfvén waves and its effect on solar wind turbulence and coronal heating. Physics of Plasmas, 8, 3759–3765.

    Article  ADS  Google Scholar 

  • Shukla, A., Sharma, R. P., & Malik, M. (2004). Filamentation of Alfvén waves associated with transverse perturbation. Physics of Plasmas, 11, 2068–2074.

    Article  ADS  Google Scholar 

  • Smith, C. W., Stawarz, J. E., Vasquez, B. J., et al. (2009). Turbulent cascade at 1 AU in high cross-helicity flows. Physical Review Letters, 103, 201101.

    Article  ADS  Google Scholar 

  • Socas-Navarro, H. (2005). Are electric currents heating the magnetic chromosphere? The Astrophysical Journal Letters, 633, L57–L60.

    Article  ADS  Google Scholar 

  • Spicer, D. S. (1991). In P. Ulmschneider, E. R. Priest & R. Rosner (Eds.), Mechanisms of chromospheric and coronal heating (Vol. 547). Heidelberg: Springer.

    Google Scholar 

  • Sridhar, S., & Goldreich, P. (1994). Towards a theory of interstellar turbulence. I. weak Alfvénic turbulence. Astrophysical Journal, 432, 612–621.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., et al. (2000a). Small scale Alfvénic structure in the aurora. Space Science Reviews, 92, 423–533.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Gustafsson, G., Marklund, G., et al. (1997). Cavity resonators and Alfvén resonance cones observed on Freja. Journal of Geophysical Research: Space Physics, 102, 2565–2575.

    Article  Google Scholar 

  • Stasiewicz, K., Holmgren, G., & Zanetti, L. (1998). Density depletions and current singularities observed by Freja. Journal of Geophysical Research: Space Physics, 103, 4251–4260.

    Article  Google Scholar 

  • Stasiewicz, K., Khotyaintsev, Y., Berthomier, M., & Wahlund, J. E. (2000b). Identification of widespread turbulence of dispersive Alfvén waves. Geophysical Research Letters, 27, 173–176.

    Article  ADS  Google Scholar 

  • Stawarz, J. E., Smith, C. W., Vasquez, B. J., et al. (2009). The turbulent cascade and proton heating in the solar wind at 1 AU. The Astrophysical Journal, 697, 1119–1127.

    Article  ADS  Google Scholar 

  • Stawarz, J. E., Smith, C. W., Vasquez, B. J., et al. (2010). The turbulent cascade for high cross-helicity states at 1 AU. The Astrophysical Journal, 713, 920.

    Article  ADS  Google Scholar 

  • Stéfant, R. J. (1970). Alfvén wave damping from finite gyroradius coupling to the ion acoustic mode. The Physics of Fluids, 13, 440–450.

    Article  ADS  Google Scholar 

  • Strong, K. T., Saba, J. L. R., Haisch, B. M., & Schmelz, J. T. (1999). The many faces of the sun: A summary of the results from NASA’s solar maximum mission. New York: Springer.

    Book  Google Scholar 

  • Suess, S. T. (1982). Polar coronal plumes. Solar Physics, 75, 145–159.

    Article  ADS  Google Scholar 

  • Suess, S. T., Poletto, G., Wang, A. H., et al. (1998). The geometric spreading of coronal plumes and coronal holes. Solar Physics, 180, 231–246.

    Article  ADS  Google Scholar 

  • Tan, B. L. (2007). Distribution of electric current in solar plasma loops. Advances in Space Research, 39, 1826–1830.

    Article  ADS  Google Scholar 

  • Tan, B. L., Ji, H. S., Huang, G. L., et al. (2006). Evolution of electric currents associated with two M-class flares. Solar Physics, 239, 137–148.

    Article  ADS  Google Scholar 

  • Teriaca, L., Poletto, G., Romoli, M., & Biesecker, D. (2003). The nascent solar wind: Origin and acceleration. The Astrophysical Journal, 588, 566–577.

    Article  ADS  Google Scholar 

  • Thomas, J. H., & Weiss, N. O. (2004). Fine structure in sunspots. Annual Review of Astronomy and Astrophysics, 42, 517–548.

    Article  ADS  Google Scholar 

  • Title, A. M., Tarbel, T. D., Topka, K. P., et al. (1989). Statistical properties of solar granulation derived from the SOUP instrument on Spacelab 2. The Astrophysical Journal, 336, 475–494.

    Article  ADS  Google Scholar 

  • Tomczyk, S., Mclntosh, S. W., Keil, S. L., et al. (2007). Alfvén waves in the solar corona. Science, 317, 1192–1196.

    Article  ADS  Google Scholar 

  • Treumann, R. A., Güdel, M., & Benz, A. O. (1990). Alfvén wave solitons and solar intermediate drift bursts. Astronomy & Astrophysics, 236, 242–249.

    ADS  Google Scholar 

  • Trimble, V., & Aschwanden, M. (2005). Astrophysics in 2004. Publications of the Astronomical Society of the Pacific, 117, 311–394.

    Article  ADS  Google Scholar 

  • Trondsen, T. S., & Cogger, L. L. (1997). High-resolution television observations of black aurora. Journal of Geophysical Research: Space Physics, 102, 363.

    Article  Google Scholar 

  • Trondsen, T. S., & Cogger, L. L. (1998). A survey of small-scale spatially periodic distortions of auroral forms. Journal of Geophysical Research: Space Physics, 103, 9405–9415.

    Article  Google Scholar 

  • Tsiklauri, D. (2011). Particle acceleration by circularly and elliptically polarised dispersive Alfvén waves in a transversely inhomogeneous plasma in the inertial and kinetic regimes. Physics of Plasmas, 18, 092903.

    Article  ADS  Google Scholar 

  • Tsiklauri, D. (2012). Three dimensional particle-in-cell simulation of particle acceleration by circularly polarised inertial Alfvén waves in a transversely inhomogeneous plasma. Physics of Plasmas, 19, 082903.

    Article  ADS  Google Scholar 

  • Tsuneta, S., Acton, L., Bruner, M., et al. (1991). The soft X-ray telescope for the SOLAR-A mission. Solar Physics, 136, 37–67.

    Article  ADS  Google Scholar 

  • Tu, C. Y. (1988). The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind. Journal of Geophysical Research: Space Physics, 93, 7–20.

    Article  Google Scholar 

  • Tu, C. Y., Pu, Z. Y., & Wei, F. S. (1984). The power spectrum of interplanetary Alfvénic fluctuations: Derivation of the governing equation and its solution. Journal of Geophysical Research: Space Physics, 89, 9695–9702.

    Article  Google Scholar 

  • Tu, C. Y., Roberts, D. A., & Goldstein, M. L. (1989). Spectral evolution and cascade constant of solar wind Alfvénic turbulence. Journal of Geophysical Research: Space Physics, 94, 13575–13578.

    Article  Google Scholar 

  • Uchida, Y., & Kaburaki, O. (1974). Excess heating of corona and chromosphere above magnetic regions by non-linear Alfvén waves. Solar Physics, 35, 451–466.

    Article  ADS  Google Scholar 

  • Ulmschneider, P. (1991). Acoustic heating. In Priest Ulmschneider & Rosner, (Eds.), Mechanisms of chromospheric and coronal heating (pp. 328–343). Berlin, Germany: Springer.

    Google Scholar 

  • Unti, T. W. J., & Neugebauer, M. (1968). Alfvén waves in the solar wind. Physics of Fluids, 11, 563–568.

    Article  ADS  Google Scholar 

  • Verma, M. K., Roberts, D. A., & Goldstein, M. L. (1995). Turbulent heating and temperature evolution in the solar wind plasma. Journal of Geophysical Research: Space Physics, 100, 19839.

    Article  Google Scholar 

  • Vernazza, J. E., Avrett, E. H., & Loeser, R. (1981). Structure of the solar chromosphere III-Models of the EUV brightness components of the quiet-sun. The Astrophysical Journal Supplement Series, 45, 635–725.

    Article  ADS  Google Scholar 

  • Voitenko, Y. (1996). Flare loops heating by the 0.1–1.0 MeV proton beams. Solar Physics, 168, 219–222.

    Article  ADS  Google Scholar 

  • Voitenko, Y. (1998). Excitation of kinetic Alfvén waves in a flaring loop. Solar Physics, 182, 411–430.

    Article  ADS  Google Scholar 

  • Voitenko, Y., & Goossens, M. (2000). Nonlinear decay of phase-mixed Alfvén waves in the solar wind. Astronomy & Astrophysics, 357, 1073–1085.

    ADS  Google Scholar 

  • Voitenko, Y., & Goossens, M. (2002). Nonlinear excitation of small-scale Alfvén waves by fast waves and plasma heating in the solar atmosphere. Solar Physics, 209, 37–60.

    Article  ADS  Google Scholar 

  • Voitenko, Y., & Goossens, M. (2004). Cross-field heating of coronal ions by low-frequency kinetic Alfvén waves. The Astrophysical Journal Letters, 605, L149–L152.

    Article  ADS  Google Scholar 

  • Voitenko, Y., & Goossens, M. (2005a). Cross-scale nonlinear coupling and plasma energization by Alfvén waves. Physical Review Letters, 94, 135003.

    Article  ADS  Google Scholar 

  • Voitenko, Y. & Goossens, M. (2005b), Nonlinear coupling of Alfvén waves with widely different cross-field wavelengths in space plasmas. Journal of Geophysical Research: Space Physics, 110 A10S01.

    Google Scholar 

  • Voitenko, Y., & Goossens, M. (2006). Energization of plasma species by intermittent kinetic Alfvén waves. Space Science Reviews, 122, 255–270.

    Article  ADS  Google Scholar 

  • Voitenko, Y., Goossens, M., Sirenko, O., & Chian, A. (2003). Nonlinear excitation of kinetic Alfvén waves and whistler waves by electron beam-driven Langmuir waves in the solar corona. Astronomy & Astrophysics, 409, 331–345.

    Article  ADS  Google Scholar 

  • Volland, H., Bird, M., Levy, G., et al. (1977). Helios-1 Faraday-rotation experiment-results and interpretations of solar occultations in 1975. Journal of Geophysics Zeitschrift Geophysik, 42, 659–672.

    ADS  Google Scholar 

  • Volwerk, M., Louarn, P., Chust, T., et al. (1996). Solitary kinetic Alfvén waves: A study of the Poynting flux. Journal of Geophysical Research: Space Physics, 101, 13335–13343.

    Article  Google Scholar 

  • Wahlund, J. E., Louarn, P., Chust, T., et al. (1994a). On ion-acoustic turbulence and the nonlinear evolution of kinetic Alfvén waves in aurora. Geophysical Research Letters, 21, 1831–1834.

    Article  ADS  Google Scholar 

  • Walker, A. B. C., De Forest, C. E., Hoover, R. B., & Barbee, T. W. (1993). Thermal and density structure of polar plumes. Solar Physics, 148, 239–252.

    Article  ADS  Google Scholar 

  • Wang, Y. M. (1994). Polar plumes and the solar wind. The Astrophysical Journal, 435, L153–L156.

    Article  ADS  Google Scholar 

  • Webb, D. F., & Zirin, H. (1981). Coronal loops and active region structure. Solar Physics, 69, 99–118.

    Article  ADS  Google Scholar 

  • Wentzel, D. G. (1974). Coronal heating by Alfvén waves. Solar Physics, 39, 129–140.

    Article  ADS  Google Scholar 

  • Wentzel, D. G. (1976). Coronal heating by Alfvén waves, II. Solar Physics, 50, 343–360.

    Article  ADS  Google Scholar 

  • Whang, Y. C., Behannon, K. W., Burlaga, L. F., & Zhang, S. (1989). Thermodynamic properties of the hellospheric plasma. Journal of Geophysical Research: Space Physics, 94, 2345.

    Article  Google Scholar 

  • Whang, Y. C., Liu, S., & Burlaga, L. F. (1990). Shock heating of the solar wind plasma. Journal of Geophysical Research: Space Physics, 95, 18769–18780.

    Article  Google Scholar 

  • Wicks, R. T., Horbury, T. S., Chen, C. H. K., & Schekochihin, A. A. (2010). Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Monthly Notices of the Royal Astronomical Society: Letters, 407, L31–L35.

    Article  ADS  Google Scholar 

  • Widing, K. G., & Feldman, U. (1992). Element abundances and plasma properties in a coronal polar plume. The Astrophysical Journal, 392, 715–721.

    Article  ADS  Google Scholar 

  • Wu, C. S., Wang, C. B., Yoon, P. H., et al. (2002). Generation of type III solar radio bursts in the low corona by direct amplification. The Astrophysical Journal, 575, 1094–1103.

    Article  ADS  Google Scholar 

  • Wu, D. J. (2012). Kinetic Alfvén wave: Theory, experiment and application. Beijing: Science Press.

    Google Scholar 

  • Wu, D. J., & Chao, J. K. (2003). Auroral electron acceleration by dissipative solitary kinetic Alfvén waves. Physics of Plasmas, 10, 3787–3789.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Chao, J. K. (2004a). Model of auroral electron acceleration by dissipative solitary kinetic Alfvén wave. Journal of Geophysical Research: Space Physics, 109, A06211.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Chao, J. K. (2004b). Recent progress in nonlinear kinetic Alfvén waves. Nonlinear Processes in Geophysics, 11, 631–645.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Chen, L. (2013). Excitation of kinetic Alfvén waves by density striation in magneto-plasmas. The Astrophysical Journal, 771, 3.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Fang, C. (1999). Two-fluid motion of plasma in Alfvén waves and heating of solar coronal loops. The Astrophysical Journal, 511, 958–964.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Fang, C. (2003). Coronal plume heating and kinetic dissipation of kinetic Alfvén waves. The Astrophysical Journal, 596, 656–662.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Fang, C. (2007). Sunspot chromospheric heating by kinetic Alfvén waves. The Astrophysical Journal Letters, 659, L181–L184.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Yang, L. (2006). Anisotropic and mass-dependent energization of heavy ions by kinetic Alfvén waves. Astronomy & Astrophysics, 452, L7–L10.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Yang, L. (2007). Nonlinear interaction of minor heavy ions and kinetic Alfvén waves and their anisotropic energization in coronal holes. The Astrophysical Journal, 659, 1693–1701.

    Article  ADS  Google Scholar 

  • Wu, D. J., Huang, G. L., Wang, D. Y., & Fälthammar, C. G. (1996b). Solitary kinetic Alfvén waves in the two-fluid model. Physics of Plasmas, 3, 2879–2884.

    Article  ADS  Google Scholar 

  • Wu, D. J., Huang, G. L., & Wang, D. Y. (1996a). Dipole density solitons and solitary dipole vortices in an inhomogeneous space plasma. Physical Review Letters, 77, 4346–4349.

    Article  ADS  Google Scholar 

  • Wu, D. J., Huang, J., Tang, J. F., & Yan, Y. H. (2007). Solar microwave drifting spikes and solitary kinetic Alfvén waves. The Astrophysical Journal Letters, 665, L171–L174.

    Article  ADS  Google Scholar 

  • Wu, D. J., Wang, D. Y., & Fälthammar, C. G. (1995). An analytical solution of finite-amplitude solitary kinetic Alfvén waves. Physics of Plasmas, 2, 4476–4481.

    Article  ADS  Google Scholar 

  • Wu, D. J., Wang, D. Y., & Huang, G. L. (1997). Two dimensional solitary kinetic Alfvén waves and dipole vortex structures. Physics of Plasmas, 4, 611–617.

    Article  ADS  Google Scholar 

  • Wygant, J. R., Keiling, A., Cattell, C. A., et al. (2002). Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 \(R_E\) altitudes in the plasma sheet boundary layer. Journal of Geophysical Research: Space Physics, 107, 1201–1215.

    Article  ADS  Google Scholar 

  • Xie, H., Ofman, L., & Viñas, A. (2004). Multiple ions resonant heating and acceleration by Alfvén/cyclotron fluctuations in the corona and the solar wind. Journal of Geophysical Research: Space Physics, 109, A08103.

    ADS  Google Scholar 

  • Yoon, P. H., Wu, C. S., & Wang, C. B. (2002). Generation of type III solar radio bursts in the low corona by direct amplification. II. Further numerical study. The Astrophysical Journal, 576, 552–560.

    Article  ADS  Google Scholar 

  • Young, P. R., Klimchuk, J. A., & Mason, H. E. (1999). Temperature and density in a polar plume-measurements from CDS/SOHO. Astronomy and Astrophysics, 350, 286–301.

    ADS  Google Scholar 

  • Zaitsev, V. V., Stepanov, A. V., Urpo, S., & Pohjolainen, S. (1998). LRC-circuit analog of current-carrying magnetic loop: Diagnostics of electric parameters. Astronomy and Astrophysics, 337, 887–896.

    ADS  Google Scholar 

  • Zhao, J. S., Wu, D. J., & Lu, J. Y. (2011). Kinetic Alfvén waves excited by oblique MHD Alfvén waves in coronal holes. The Astrophysical Journal, 735, 114.

    Article  ADS  Google Scholar 

  • Zhao, J. S., Wu, D. J., & Lu, J. Y. (2013). Kinetic Alfvén turbulence and parallel electric fields in flare loops. The Astrophysical Journal, 767, 109.

    Article  ADS  Google Scholar 

  • Zhao, R. Y. (1995). A model of solar (radio) active regions. Astrophysics and Space Science, 234, 125–137.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jin Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Nanjing University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, DJ., Chen, L. (2020). KAWs in Solar Atmosphere Heating. In: Kinetic Alfvén Waves in Laboratory, Space, and Astrophysical Plasmas. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-13-7989-5_6

Download citation

Publish with us

Policies and ethics