Skip to main content

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

  • 507 Accesses

Abstract

Unlike the magnetosphere-ionosphere coupling is concentrated mainly in the polar magnetosphere, especially in the auroral plasma and is performed via field-aligned currents, the solar wind-magnetosphere coupling can occur in all outer boundaries of the magnetosphere from the magnetopause on the day side to the magnetotail on the night side. On the day side, in fact, before the supersonic magnetized plasma flow of the solar wind directly impacts on the magnetosphere, a shock can be first formed in front of the magnetosphere due to the blunt obstacle of the magnetosphere, called the bow shock, and the magnetopause is the interface between the shocked solar wind and the magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelopoulos, V. (2008). The THEMIS mission. Space Science Reviews, 141, 5.

    Article  ADS  Google Scholar 

  • Axford, W. I., & Hines, C. O. (1961). A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Canadian Journal of Physics, 39, 1433.

    Article  ADS  MathSciNet  Google Scholar 

  • Baker, D. N., Bame, S. J., Feldman, W. C., et al. (1986). Bidirectional electron anisotropies in the distant tail-ISEE 3 observations of polar rain. Journal of Geophysical Research, 91, 5637–5662.

    Article  ADS  Google Scholar 

  • Baumjohann, W., Paschmann, G., & Lühr, H. (1990). Characteristics of high-speed ion flows in the plasma sheet. Journal of Geophysical Research, 95, 3801.

    Article  ADS  Google Scholar 

  • Bohm, D. (1949). Note on a theorem of bloch concerning possible causes of superconductivity. Physical Review, 75, 502–504.

    Article  ADS  MATH  Google Scholar 

  • Chaston, C. C., Hull, A. J., Bonnell, J. W., et al. (2007b). Large parallel electric fields, currents, and density cavities in dispersive Alfvén waves above the aurora. Journal of Geophysical Research, 112, A05215.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Johnson, J. R., Wilber, M., et al. (2009). Kinetic Alfvén wave turbulence and transport through a reconnection diffusion region. Physical Review Letters, 102, 015001.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Peticolas, L. M., Carlson, C. W., et al. (2005). Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations. Journal of Geophysical Research, 110, A02211.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Wilber, M., Mozer, F. S., et al. (2007c). Mode conversion and anomalous transport in kelvin-helmholtz vortices and kinetic Alfvén waves at the earth’s magnetopause. Physical Review Letters, 99, 175004.

    Article  ADS  Google Scholar 

  • Chaston, C., Bonnell, J., Mcfadden, J. P., et al. (2008). Turbulent heating and cross-field transport near the magnetopause from THEMIS. Geophysical Research Letters, 35, L17S08.

    Article  Google Scholar 

  • Cowley, S. W. H., Hynds, R. J., Richardson, I. G., et al. (1984). Energetic ion regions in the deep geomagnetic tail: ISEE-3. Geophysical Research Letters, 11, 275–278.

    Article  ADS  Google Scholar 

  • Crooker, N. U., & Siscoe, G. L. (1977). A mechanism for pressure anisotropy and mirror instability in the dayside magnetosheath. Journal of Geophysical Research, 82, 185–186.

    Article  ADS  Google Scholar 

  • Dai, L., Wang, C., Zhang, Y., et al. (2017). Kinetic Alfvén wave explanation of the Hall fields in magnetic reconnection. Geophysical Research Letters, 44, 634–640.

    Article  ADS  Google Scholar 

  • Decoster, R. J., & Frank, L. A. (1979). Observations pertaining to the dynamics of the plasma sheet. Journal of Geophysical Research, 84, 5099–5121.

    Article  ADS  Google Scholar 

  • Denton, R. E., Anderson, B. J., Fuselier, S. A., et al. (1994). Ion anisotropy-driven waves in the Earth’s magnetosheath and plasma depletion layer. Solar System Plasmas in Space and Time, 84, 111–119.

    Article  Google Scholar 

  • Dombeck, J., Cattell, C., Wygant, J. R., et al. (2005). Alfvén waves and Poynting flux observed simultaneously by Polar and FAST in the plasma sheet boundary layer. Journal of Geophysical Research. 110, A12S90.

    Google Scholar 

  • Drake, J. F., Kleva, R. G., & Mandt, M. E. (1994). Structure of thin current layers: Implications for magnetic reconnection. Physical Review Letters, 73, 1251–1254.

    Article  ADS  Google Scholar 

  • Duan, S. P., Dai, L., Wang, C., et al. (2016). Evidence of kinetic Alfvén eigenmode in the near-Earth magnetotail during substorm expansion phase. Journal of Geophysical Research, 121, 4316–4330.

    Google Scholar 

  • Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47–48.

    Article  ADS  Google Scholar 

  • Eastman, T. E., & Hones, E. W. (1979). Characteristics of the magnetospheric boundary layer and magnetopause layer as observed by IMP 6. Journal of Geophysical Research, 84, 2019–2028.

    Article  ADS  Google Scholar 

  • Eastman, T. E., Frank, L. A., & Huang, C. Y. (1985a). The boundary layers as the primary transport regions of the earth’s magnetotail. Journal of Geophysical Research, 90, 9541–9560.

    Article  ADS  Google Scholar 

  • Eastman, T. E., Frank, L. A., Peterson, W. K., & Lennartsson, W. (1984). The plasma sheet boundary layer. Journal of Geophysical Research, 89, 1553–1572.

    Article  ADS  Google Scholar 

  • Eastman, T. E., Popielawska, B., & Frank, L. A. (1985b). Three-dimensional plasma observations near the outer magnetospheric boundary. Journal of Geophysical Research, 90, 9519–9539.

    Article  ADS  Google Scholar 

  • Escoubet, C. P., Fehringer, M., & Goldstein, M. (2001). The cluster mission. Annales Geophysicae, 19, 1197–1200.

    Article  ADS  Google Scholar 

  • Fazakerley, A. N., & Southwood, D. J. (1994). Mirror instability in the magnetosheath. Advances in Space Research, 14, 65–68.

    Article  ADS  Google Scholar 

  • Furth, H. P., Killeen, J., & Rosenbluth, M. N. (1963). Finite-resistivity instabilities of a sheet pinch. Physics of Fluids, 6, 459.

    Article  ADS  Google Scholar 

  • Galeev, A. A., & Sagdeev, R. Z. (1984). Current instabilities and anomalous resistivity of plasma. In A. A. Galeev & R. N. Sudan (Eds.), Basic plasma physics 2 (pp. 271–303). Amsterdan: North-Holland Physics Publishing.

    Google Scholar 

  • Guo, Z., Hong, M., Lin, Y., et al. (2015). Generation of kinetic Alfvén waves in the high-latitude near-earth magnetotail: A global hybrid simulation. Physics of Plasmas, 22, 022117.

    Article  ADS  Google Scholar 

  • Haerendel, G. (1978). Microscopic plasma processes related to reconnection. Journal of Atmospheric and Terrestrial Physics, 40, 343–353.

    Article  ADS  Google Scholar 

  • Harten, R., & Clark, K. (1995). The design features of the GGS wind and polar spacecraft. Space Science Reviews, 71, 23–40.

    Article  ADS  Google Scholar 

  • Hasegawa, A. (1975). Plasma instabilities and nonlinear effects (p. 93). New York: Springer-Verlag.

    Book  Google Scholar 

  • Hasegawa, A. (1976). Particle acceleration by MHD surface wave and formation of aurora. Journal of Geophysical Research, 81, 5083–5090.

    Article  ADS  Google Scholar 

  • Hasegawa, A. (1987). Beam production at plasma boundaries by kinetic Alfvén waves. Journal of Geophysical Research, 92, 11221–11223.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Chen, L. (1976a). Kinetic process of plasma heating by resonant mode conversion of Alfvén wave. Physics of Fluids, 19, 1924–1934.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Chen, L. (1976b). Parametric decay of Kinetic Alfvén Wave and its application to plasma heating. Physical Review Letters, 36, 1362–1365.

    Google Scholar 

  • Hasegawa, A., & Mima, K. (1978). Anomolous transport produce by kinetic Alfvén wave turbulence. Journal of Geophysical Research, 83, 1117–1123.

    ADS  Google Scholar 

  • Hasegawa, H., Fujimoto, M., Phan, T. D., et al. (2004). Transport of solar wind into earth’s magnetosphere through rolled-up kelvin-helmholtz vortices. Nature, 430, 755–758.

    Article  ADS  Google Scholar 

  • Hones, E. W., Akasofu, S. I., Bame, S. J., & Singer, S. (1972). Outflow of plasma from the magnetotail into the magnetosheath. Journal of Geophysical Research, 77, 6688–6695.

    Article  ADS  Google Scholar 

  • Huba, J. D., Gladd, N. T., & Papadopoulos, K. (1977). The lower-hybrid-drift instability as a source of anomalous resistivity for magnetic field line reconnection. Geophysical Research Letters, 4, 125–126.

    Article  ADS  Google Scholar 

  • Huang, C. Y., Frank, L. A., Peterson, W. K., et al. (1987). Filamentary structures in the magnetotail lobes. Journal of Geophysical Research, 92, 2349–2363.

    Article  ADS  Google Scholar 

  • Ipavich, F. M., Gosling, J. T., & Scholer, M. (1984). Correlation between the He/H ratios in upstream particle events and in the solar wind. Journal of Geophysical Research, 89, 1501–1507.

    Article  ADS  Google Scholar 

  • Johnson, J. R., & Cheng, C. Z. (1997). Kinetic Alfvén waves and plasma transport at the magnetopause. Geophysical Research Letters, 24, 1423–1426.

    Article  ADS  Google Scholar 

  • Kaufmann, R. L., Horng, J. T., & Wolfe, A. (1970). Large-amplitude hydromagnetic waves in the inner magnetosheath. Journal of Geophysical Research, 75, 4666–4676.

    Article  ADS  Google Scholar 

  • Keiling, A., Wygant, J. R., Cattell, C., et al. (2002). Correlation of Alfvén wave poynting flux in the plasma sheet at 4–7 \(R_E\) with ionospheric electron energy flux. Journal of Geophysical Research, 107, 1132–1145.

    Article  Google Scholar 

  • Kivelson, M. G., & Russell, C. T. (1995). Introduction to space physics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Knudsen, D. J., & Wahlund, J.-E. (1998). Core ion flux bursts within solitary kinetic Alfvén waves. Journal of Geophysical Research, 103, 4157–4170.

    Article  ADS  Google Scholar 

  • Lühr, H., & Klöcker, N. (1987). AMPTE-IRM observations of magnetic cavities near the magnetopause. Geophysical Research Letters, 14, 186–189.

    Article  ADS  Google Scholar 

  • Labelle, J., & Treumann, R. A. (1988). Plasma waves at the dayside magnetopause. Space Science Reviews, 47, 175–202.

    Article  ADS  Google Scholar 

  • Lee, L. C., Johnson, J. R., & Ma, Z. W. (1994). Kinetic Alfvén waves as a source of plasma transport at the dayside magnetopause. Journal of Geophysical Research, 99, 17405–17411.

    ADS  Google Scholar 

  • Lin, C. H., Chao, J. K., Lee, L. C., Wu, D. J., et al. (1998). Identification of mirror moves by the phase difference between perturbed magnetic field and plasmas. Journal of Geophysical Research, 103, 6621–6631.

    Article  ADS  Google Scholar 

  • Lin, Y., Johnson, J. R., & Wang, X. Y. (2010). Hybrid simulation of mode conversion at the magnetopause. Journal of Geophysical Research, 115, A04208.

    ADS  Google Scholar 

  • Lin, Y., Johnson, J. R., & Wang, X. Y. (2012). Three-dimensional mode conversion associated with kinetic Alfvén waves. Physical Review Letters, 109, 125003.

    Article  ADS  Google Scholar 

  • Lu, Q. M., Wu, C. S., & Wang, S. (2006). The nearly isotropic velocity distributions of energetic electrons in the solar wind. The Astrophysical Journal, 638, 1169–1175.

    Article  ADS  Google Scholar 

  • Lucek, E. A., Dunlop, M. W., Balogh, A., et al. (1999). Identification of magnetosheath mirror modes in equator-s magnetic field data. Annales Geophysicae, 17, 1560–1573.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y., Frank, L. A., Ackerson, K. L., et al. (1978). Plasma flows and magnetic field vectors in the plasma sheet during substorms. Journal of Geophysical Research, 83, 3849–3858.

    Article  ADS  Google Scholar 

  • Lyons, L. R., & Speiser, T. W. (1982). Evidence for current sheet acceleration in the geomagnetic tail. Journal of Geophysical Research, 87, 2276.

    Article  ADS  Google Scholar 

  • Mikhailovskii, A. B. (1967). Oscillations of an inhomogeneous plasma. In Leontovich, (Ed.), Reviews of plasma physics (pp. 159–172). New York: Consultants Bureau.

    Chapter  Google Scholar 

  • Moghaddam-Taaheri, E., Goertz, C. K., & Smith, R. A. (1989). Ion beam generation at the plasma sheet boundary layer by kinetic Alfvén waves. Journal of Geophysical Research, 94, 10047–10060.

    Article  ADS  Google Scholar 

  • Mozer, F. S., Bale, S. D., Mcfadden, J. P., & Torbert, R. B. (2005). New features of electron diffusion regions observed at subsolar magnetic field reconnection sites. Geophysical Research Letters, 32, L24102.

    Article  ADS  Google Scholar 

  • Norqvist, P., André, M., Eliasson, L., et al. (1996). Ion cyclotron heating in the dayside magnetosphere. Journal of Geophysical Research, 101, 13179–13193.

    Article  ADS  Google Scholar 

  • Ogilvie, K. W., Fitzenreiter, R. J., & Scudder, J. D. (1984). Observations of electron beams in the low-latitude boundary layer. Journal of Geophysical Research, 89, 10723–10732.

    Article  ADS  Google Scholar 

  • Papadopoulos, K. (1979). The role of microturbulence on collisionless reconnection. In S. I. Akasofu (Ed.), Dynamics in the Magnetosphere, 289. Dordrecht, Holland: D. Reidel Publ. Co.

    Chapter  Google Scholar 

  • Phan, T., Frey, H. U., Frey, S., et al. (2003). Simultaneous cluster and IMAGE observations of cusp reconnection and auroral proton spot for northward IMF. Geophysical Research Letters, 30, 1509.

    Article  ADS  Google Scholar 

  • Pincon, J. L. (1995). Cluster and the K-Filtering. In Proceedings of the Cluster Workshops, Data Analysis Tools and Physical Measurements and Mission-Oriented Theory.

    Google Scholar 

  • Prakash, M. (1995). Anomalous plasma diffusion due to kinetic Alfvén wave fluctuations at the dayside magnetopause, in cross-scale coupling in space plasmas. AGU, 249.

    Google Scholar 

  • Russell, C. T., & Elphic, R. C. (1978). Initial ISEE magnetometer results: Magnetopause observations. Space Science Reviews, 22, 681–715.

    Article  ADS  Google Scholar 

  • Sagdeev, R. Z., & Galeev, A. A. (1969). Nonlinear plasma theory benjamin. New York.

    Google Scholar 

  • Segerlind L. J. (1976). Applied finite element analysis (2nd Ed.). Journal of Vibration Acoustics Stress and Reliability in Design, 109(3), 329.

    Google Scholar 

  • Sharp, R. D., Carr, D. L., Peterson, W. K., & Shelley, E. G. (1981). Ion streams in the magnetotail. Journal of Geophysical Research, 86, 4639.

    Article  ADS  Google Scholar 

  • Song, P., Russell, C. T., Fitzenreiter, R. J., et al. (1993). Structure and properties of the subsolar magnetopause for northward interplanetary magnetic field: Multiple-instrument particle observations. Journal of Geophysical Research, 98, 11319–11337.

    Article  ADS  Google Scholar 

  • Sonnerup, B. U. O. (1980). Theory of the low-latitude boundary layer. Journal of Geophysical Research, 85, 2017–2026.

    Article  ADS  Google Scholar 

  • Southwood, D. J., & Kivelson, M. G. (1991). An approximate description of field-aligned currents in a planetary magnetic field. Journal of Geophysical Research, 96, 67–75.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., et al. (2000a). Small scale Alfvénic structure in the aurora. Space Science Reviews, 92, 423–533.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Khotyaintsev, Y., & Grzesiak, M. (2004). Dispersive Alfvén waves observed by cluster at the magnetopause. Physica Scripta, T107, 171–179.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Khotyaintsev, Y., Berthomier, M., & Wahlund, J. E. (2000b). Identification of widespread turbulence of dispersive Alfvén waves. Geophysical Research Letters, 27, 173–176.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Lundin, R., & Marklund, G. (2000c). Stochastic ion heating by orbit chaotization on electrostatic waves and nonlinear structures. Physica Scripta, T84, 60–63.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Seyler, C. E., Mozer, F. S., et al. (2001). Magnetic bubbles and kinetic Alfvén waves in the high-latitude magnetopause boundary. Journal of Geophysical Research, 106, A29503–29514.

    Article  ADS  Google Scholar 

  • Strang, G., & Fix, G. (1973). A Fourier Analysis of the Finite Element Variational Method. Constructive Aspects Of Functional Analysis, 795–840.

    Google Scholar 

  • Takada, T., Seki, K., Hirahara, M., et al. (2005). Statistical properties of low-frequency waves and ion beams in the plasma sheet boundary layer: Geotail observations. Journal of Geophysical Research, 110, A02204.

    Article  ADS  Google Scholar 

  • Takahashi, K., & Hones, E. W, Jr. (1988). ISEE 1 and 2 observations of ion distributions at the plasma sheet-tail lobe boundary. Journal of Geophysical Research, 93, 8558–8582.

    Article  ADS  Google Scholar 

  • Takahashi, K., Sibeck, D. G., Newell, P. T., & Spence, H. E. (1991). ULF waves in the low-latitude boundary layer and their relationship to magnetospheric pulsations: A multisatellite observation. Journal of Geophysical Research, 96, 9503–9519.

    Article  ADS  Google Scholar 

  • Treumann, R. A., Güdel, M., & Benz, A. O. (1990). Alfvén wave solitons and solar intermediate drift bursts. Astronomy & Astrophysics, 236, 242–249.

    ADS  Google Scholar 

  • Turner, J. M., Burlaga, L. F., Ness, N. F., & Lemaire, J. F. (1977). Magnetic holes in the solar wind. Journal of Geophysical Research, 82, 1921–1924.

    Article  ADS  Google Scholar 

  • Wahlund, J. E., Eriksson, A. I., Holback, B., et al. (1998). Broadband ELF plasma emission during auroral energiztion 1. Slow ion acoustic waves. Journal of Geophysical Research, 103, 4343–4375.

    Article  ADS  Google Scholar 

  • Whelan, T., & Goertz, C. K. (1987). A new model for the ion beams in the plasma sheet boundary layer. Geophysical Research Letters, 14, 68–71.

    Article  ADS  Google Scholar 

  • Williams, D. J. (1981). Energetic ion beams at the edge of the plasma sheet-ISEE 1 observations plus a simple explanatory model. Journal of Geophysical Research, 86, 5507–5518.

    Article  ADS  Google Scholar 

  • Winterhalter, D., Neugebauer, M., Goldstein, B. E., et al. (1994). Ulysses field and plasma observations of magnetic holes in the solar wind and their relation to mirror-mode structures. Journal of Geophysical Research, 99, 23371–23381.

    Article  ADS  Google Scholar 

  • Wu, D. J., Wang, D. Y., & Huang, G. L. (1997). Two dimensional solitary kinetic Alfvén waves and dipole vortex structures. Physics of Plasmas, 4, 611–617.

    Article  ADS  Google Scholar 

  • Wu, B. H., Wang, J. M., & Lee, L. C. (2001). Generation of kinetic Alfvén waves by mirror instability. Geophysical Research Letters, 28, 3051–3054.

    Article  ADS  Google Scholar 

  • Wygant, J. R., Keiling, A., Cattell, C. A., et al. (2002). Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 \(R_E\) altitudes in the plasma sheet boundary layer. Journal of Geophysical Research, 107, 1201–1215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jin Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Nanjing University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, DJ., Chen, L. (2020). KAWs in Solar Wind-Magnetosphere Coupling. In: Kinetic Alfvén Waves in Laboratory, Space, and Astrophysical Plasmas. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-13-7989-5_4

Download citation

Publish with us

Policies and ethics