Skip to main content

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

Abstract

Besides the sun shines on the earth there is an invisible direct interaction between the sun and the earth, that is the impact of the solar wind on the earth. The conception of intermittent plasma streams consisting of electrons and ions from the sun was introduced by Chapman and Ferraro (1930) to explain the cause of geomagnetic storms, and later the existence of the solar wind continuously blowing away from the sun was proposed successively by Biermann (1948, 1951, 1957) and Alfvén (1957) in their studies on comet tails to explain the deviation of the comet tail direction from the solar-comet radial direction (i.e., the solar radiation pressure direction) found by Hoffmeister in 1943.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasofu, S.-I. (1981). Energy coupling between the solar wind and the magnetosphere. Space Science Reviews, 28, 121–190.

    Article  ADS  Google Scholar 

  • Alfvén, H. (1957). On the theory of comet tails. Tellus, 1, 92–96.

    ADS  Google Scholar 

  • Banks, P. M., & Holzer, T. E. (1969). High-latitude plasma transport: The polar wind. Journal of Geophysical Research, 74, 6317–6332.

    Article  ADS  Google Scholar 

  • Bellan, P. M., & Stasiewicz, K. (1998). Fine-scale cavitation of ionospheric plasma caused by inertial Alfvén wave ponderomoive force. Physical Review Letters, 80, 3523–3526.

    Article  ADS  Google Scholar 

  • Biermann, L. (1948). Über die Ursache der chromosphärischen Turblenz und des UV-Exzesses der Sonnenstrahlung. Zeitschrift fur Astrophysik, 25, 161–169.

    ADS  MATH  Google Scholar 

  • Biermann, L. (1951). Kometenschweife und solare Korpuskular Strahlung. Zeitschrift fur Astrophysik, 29, 274–286.

    ADS  Google Scholar 

  • Biermann, L. (1957). Solar corpuscular radiation and the interplanetary gas. Observatory, 77, 109–110.

    ADS  Google Scholar 

  • Bingham, R., Bryant, D. A., & Hall, D. S. (1984). A wave model for the aurora. Geophysical Research Letters, 11, 327–330.

    Article  ADS  Google Scholar 

  • Birkeland, K. R. (1908). The norwegian aurora polaris expedition 1902–1903: On the cause of magnetic storms and the origin of terrestrial magnetism. London: Longmans Green & Co.

    Google Scholar 

  • Boehm, M. H., Clemmons, J., Wahlund, J. E., et al. (1995). Observations of an upward-directed electron beam with the perpendicular temperature of the cold ionosphere. Geophysical Research Letters, 22, 2103–2106.

    Article  ADS  Google Scholar 

  • Bonetti, A., Bridge, H. S., Lazarus, A. J., Lyon, E. F., Rossi, B., & Scherb, F. (1963). Explorer 10 plasma measurements. Journal of Geophysical Research, 68, 4017–4063.

    Article  ADS  Google Scholar 

  • Borovsky, J. E. (1993). Auroral arc thicknesses as predicted by various theories. Journal of Geophysical Research: Space Physics, 98, 6101–6138.

    Article  Google Scholar 

  • Boström, R., Gustafsson, G., Holback, B., et al. (1988). Characteristics of solitary waves and weak double layers in the magnetospheric plasma. Physical Review Letters, 61, 82–85.

    Article  ADS  Google Scholar 

  • Bridge, H. S., Dilworth, C., Lazarus, A. J., Lyon, E. F., Rossi, B. & Scherb, F. (1962). Direct observations of the interplanetary plasma. Journal of the Physical Society of Japan, 17(Suppl. A-II), 553.

    Google Scholar 

  • Bryant, D. A. (1981). Rocket studies of particle structure associated with auroral arcs. In Akasofu & Kan (Eds.), AGU geophysical monographs 25: Physics of auroral arc formation (p. 103).

    Google Scholar 

  • Bryant, D. A. (1990). Two theories of auroral electron acceleration. In Buti (Ed.), Solar and planetary plasma physics (pp. 58–91). London: World Scientific.

    Article  ADS  Google Scholar 

  • Burke, A. T., Maggs, J. E., & Morales, G. J. (2000a). Spontaneous fluctuations of a temperature filament in a magnetized plasma. Physical Review Letters, 84, 1451–1454.

    Article  ADS  Google Scholar 

  • Burke, A. T., Maggs, J. E., & Morales, G. J. (2000b). Experimental study of fluctuations excited by a narrow temperature filament in a magnetized plasma. Physics of Plasmas, 7, 1397–1407.

    Article  ADS  Google Scholar 

  • Carlson, C. W., Pfaff, R. E., & Watzin, J. G. (1998). The fast auroral SnapshoT (FAST) mission. Geophysical Research Letters, 25, 2013–2106.

    Article  ADS  Google Scholar 

  • Chapman, S. (1931a). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. Proceedings of the Physical Society, 43, 26–45.

    Article  ADS  MATH  Google Scholar 

  • Chapman, S. (1931b). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part II. Grazing incidence. Proceedings of the Physical Society, 43, 483–501.

    Article  ADS  MATH  Google Scholar 

  • Chapman, S., & Ferraro, V. C. A. (1930). A new theory of magnetic storms. Nature, 126, 129–130.

    Article  ADS  Google Scholar 

  • Chapman, S., & Ferraro, V. C. A. (1931). A new theory of magnetic storms. Terrestrial Magnetism and Atmospheric Electricity, 36, 77.

    Article  ADS  MATH  Google Scholar 

  • Chaston, C. C., Carlson, C. W., Peria, W. J., et al. (1999). FAST observations of inertial Alfvén waves in the dayside aurora. Geophysical Research Letters, 26, 647–650.

    Article  ADS  Google Scholar 

  • Chian, C. L., & Kamide, Y. (2007). An overview of the solar-terrestrial environment. In Y. Kamide & A. Chian (Eds.), Handbook of the solar-terrestrial environment (pp. 1–23). Berlin: Springer.

    Google Scholar 

  • Chmyrev, V. M., Bilichenko, S. V., Pokhotelov, O. A., et al. (1988). Alfvén vortices and related phenomena in the ionosphere and the magnetosphere. Physica Scripta, 38, 841–854.

    Article  ADS  Google Scholar 

  • Fälthammar, C. G. (2004). Magnetic-field aligned electric fields in collisionless space plasmas-a brief review. Geofisica Internacional, 43, 225–239.

    Google Scholar 

  • Goertz, C. K. (1981). Discrete breakup arcs and kinetic Alfvén waves. In Akasofu & Kan (Eds.), AGU geophysical monographs 25: Physics of auroral arc formation (p. 451).

    Google Scholar 

  • Goertz, C. K. (1984). Kinetic Alfvén waves on auroral field lines. Planetary and Space Science, 32, 1387–1392.

    Article  ADS  Google Scholar 

  • Goertz, C. K., & Boswell, R. W. (1979). Magnetosphere-ionosphere coupling. Journal of Geophysical Research, 84, 7239–7246.

    Article  ADS  Google Scholar 

  • Gold, T. (1959). Motions in the magnetosphere of the earth. Journal of Geophysical Research, 64, 1219–1224.

    Article  ADS  Google Scholar 

  • Gurnett, D. A. (1974). The earth as a radio source-Terrestrial kilometric radiation. Journal of Geophysical Research, 79, 4227–4238.

    Article  ADS  Google Scholar 

  • Hasegawa, A. (1975). Plasma instabilities and nonlinear effects (p. 93). New York: Springer.

    Book  Google Scholar 

  • Hasegawa, A. (1976). Particle acceleration by MHD surface wave and formation of aurora. Journal of Geophysical Research, 81, 5083–5090.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Mima, K. (1976). Exact solitary Alfvén wave. Physical Review Letters, 37, 690–693.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Mima, K. (1978). Anomolous transport produce by kinetic Alfvén wave turbulence. Journal of Geophysical Research, 83, 1117–1123.

    Article  ADS  Google Scholar 

  • Heppner, J. P., Ness, N. F., Skillman T. L. & Scearce, C. S. (1962). Magnetic field measurements with the Explorer 10 satellite. Journal of the Physical Society of Japan, 17(Suppl. A-II), 546.

    Google Scholar 

  • Hoffman, R. A., & Evans, D. S. (1968). Field-aligned electron bursts at high latitude observed by OGO-4. Journal of Geophysical Research, 73, 6201–6214.

    Article  ADS  Google Scholar 

  • Hoffmeister, C. (1943). Physikalische Untersuchungen an Kometen. I. Die Beziehungen des primären Schweifstrahls zum Radiusvektor. Zeitschrift fur Astrophysik, 22, 265–285.

    ADS  Google Scholar 

  • Huang, G. L., Wang, D. Y., Wu, D. J., et al. (1997). The eigenmode of solitary kinetic Alfvén waves by Freja satellite. Journal of Geophysical Research, 102, 7217–7224.

    Article  ADS  Google Scholar 

  • Hui, C. H., & Seyler, C. E. (1992). Electron acceleration by Alfvén waves in the magnetosphere. Journal of Geophysical Research, 97, 3953–3963.

    Article  ADS  Google Scholar 

  • Kalita, M. K., & Kalita, B. C. (1986). Finite-amplitude solitary Alfvén waves in a low-beta plasma. Journal of Plasma Physics, 35, 267–272.

    Article  ADS  Google Scholar 

  • Kivelson, M. G., & Southwood, D. J. (1986). Coupling of global magnetospheric MHD eigenmodes to field line resonance. Journal of Geophysical Research, 91, 4345–4351.

    Article  ADS  Google Scholar 

  • Kletzing, C. A. (1994). Electron acceleration by kinetic Alfvén waves. Journal of Geophysical Research, 99, 11095–11103.

    Article  ADS  Google Scholar 

  • Kletzing, C. A., & Torbert, R. B. (1994). Electron time dispersion. Journal of Geophysical Research, 99, 2159–2172.

    Article  ADS  Google Scholar 

  • Kletzing, C. A., Mozer, F. S., & Torbert, R. B. (1998). Electron temperature and density at high latitude. Journal of Geophysical Research, 103, 14837–14845.

    Article  ADS  Google Scholar 

  • Kletzing, C. A., Scudder, J. D., Dors, E. E., & Curto, C. (2003). Auroral source region: Plasma properties of the high-latitude plasma sheet. Journal of Geophysical Research, 108, 1360–1375.

    Article  Google Scholar 

  • Lee, L. C., & Wu, C. S. (1980). Amplification of radiation near cyclotron frequency due to electron population inversion. The Physics of Fluids, 23, 1348.

    Article  ADS  Google Scholar 

  • Lee, L. C., Johnson, J. R., & Ma, Z. W. (1994). Kinetic Alfvén waves as a source of plasma transport at the dayside magnetopause. Journal of Geophysical Research, 99, 17405–17411.

    Article  ADS  Google Scholar 

  • Louarn, P., Wahlund, J. E., Chust, T., et al. (1994). Observations of kinetic Alfvén waves by the Freja spacecraft. Geophysical Research Letters, 21, 1847–1850.

    Article  ADS  Google Scholar 

  • Lundin, R., Haerendel, G., & Grahn, S. (1994). The Freja science mission. Space Science Reviews, 70, 405–419.

    Article  ADS  Google Scholar 

  • Lysak, R. L., & Carlson, C. W. (1981). Effect of microscopic turbulence on magnetosphere-ionosphere coupling. Geophysical Research Letters, 8, 269–272.

    Article  ADS  Google Scholar 

  • Lysak, R. L., & Dum, C. T. (1983). Dynamics of magnetosphere-ionosphere coupling including turbulent transport. Journal of Geophysical Research, 88, 365–380.

    Article  ADS  Google Scholar 

  • Lysak, R. L., & Hudson, M. K. (1979). Coherent anomalous resistivity in the region of electrostatic shocks. Geophysical Research Letters, 6, 661–663.

    Article  ADS  Google Scholar 

  • Lysak, R. L., & Hudson, M. K. (1987). Effect of double layers on magnetosphere-ionosphere coupling. Laser Particle Beams, 5, 351–366.

    Article  Google Scholar 

  • Mölkki, A., Eriksson, A. I., Dovner, P. O., et al. (1993). A statistical survey of auroral solitary waves and weak double layers-1. Occurrence and net voltage. Journal of Geophysical Research, 98, 15521–15530.

    Article  ADS  Google Scholar 

  • Mcllwain, C. E. (1960). Direct measurements of particles producing visible auroras. Journal of Geophysical Research, 65, 2727–2747.

    Article  ADS  Google Scholar 

  • Mozer, F. S., Cattell, C. A., Hudson, M. K., et al. (1980). Satellite measurements and theories of low altitude auroral particle acceleration. Space Science Reviews, 27, 155–213.

    Article  ADS  Google Scholar 

  • Mozer, F. S., Cattell, C. A., Temerin, M., et al. (1979). The dc and ac electric field, plasma density, plasma temperature, and field-aligned current experiments on the S3–3 satellite. Journal of Geophysical Research, 84, 5875–5884.

    Article  ADS  Google Scholar 

  • Papadopoulos, K. (1977). A review of anomalous resistivity for the ionosphere. Reviews of Geophysics, 15, 113–127.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1958). Interaction of the solar wind with the geomagnetic field. The Physics of Fluids, 1, 171–187.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Reiff, P. H., Collin, H. L., Craven, J. D., et al. (1988). Determination of auroral electrostatic potentials using high-and low-altitude particle distributions. Journal of Geophysical Research, 93, 7441–7565.

    Article  ADS  Google Scholar 

  • Russell, C. T. (1995). A brief history of solar-terrestrial physics. In M. G. Kivelson & C. T. Russell (Eds.), Introduction to space physics (pp. 1–26). New York: Cambridge University Press.

    Google Scholar 

  • Shukla, P. K., Rahman, H. D., & Sharma, R. P. (1982). Alfvén soliton in a low-beta plasma. Journal of Plasma Physics, 28, 125–131.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., et al. (2000a). Small scale Alfvénic structure in the aurora. Space Science Reviews, 92, 423–533.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Gustafsson, G., Marklund, G., et al. (1997). Cavity resonators and Alfvén resonance cones observed on Freja. Journal of Geophysical Research, 102, 2565–2575.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Holmgren, G., & Zanetti, L. (1998). Density depletions and current singularities observed by Freja. Journal of Geophysical Research, 103, 4251–4260.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Khotyaintsev, Y., Berthomier, M., & Wahlund, J. E. (2000b). Identification of widespread turbulence of dispersive Alfvén waves. Geophysical Research Letters, 27, 173–176.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Seyler, C. E., Mozer, F. S., et al. (2001). Magnetic bubbles and kinetic Alfvén waves in the high-latitude magnetopause boundary. Journal of Geophysical Research, 106, A29503–29514.

    Article  ADS  Google Scholar 

  • Stewart, B. (1882). On the connexion between the state of the sun’s surface and the horizontal intensity of the Earth’s magnetism. Proceedings of the Royal Society of London, 34, 406–409.

    ADS  Google Scholar 

  • Temerin, M., Cerny, K., Lotko, W., & Mozer, F. S. (1982). Observations of double layers and solitary waves in the auroral plasma. Physical Review Letters, 48, 175–1179.

    Article  ADS  Google Scholar 

  • Thompson, B. J., & Lysak, R. L. (1996). Electron acceleration by inertial Alfvén waves. Journal of Geophysical Research, 101, 5359–5369.

    Article  ADS  Google Scholar 

  • Vaivads, A., Rönnmark, K., Oscarsson, T., & André, M. (1998). Heating of beam ions by ion acoustic waves. Annales Geophysicae, 16, 403–412.

    Article  ADS  Google Scholar 

  • Vogt, J., & Haerendel, G. (1998). Reflection and transmission of Alfvén waves at the auroral acceleration region. Geophysical Research Letters, 25, 277–280.

    Article  ADS  Google Scholar 

  • Volwerk, M., Louarn, P., Chust, T., et al. (1996). Solitary kinetic Alfvén waves-a study of the Poynting flux. Journal of Geophysical Research, 101, 13335–13343.

    Article  ADS  Google Scholar 

  • Wahlund, J. E., Eriksson, A. I., Holback, B., et al. (1998). Broadband ELF plasma emission during auroral energiztion 1. Slow ion acoustic waves. Journal of Geophysical Research, 103, 4343–4375.

    Article  ADS  Google Scholar 

  • Wahlund, J. E., Louarn, P., Chust, T., et al. (1994a). On ion-acoustic turbulence and the nonlinear evolution of kinetic Alfvén waves in aurora. Geophysical Research Letters, 21, 1831–1834.

    Article  ADS  Google Scholar 

  • Wahlund, J. E., Louarn, P., Chust, T., et al. (1994b). Observations of ion acoustic fluctuations in the auroral topside ionosphere by the Frejia S/C. Geophysical Research Letters, 21, 1835–1838.

    Article  ADS  Google Scholar 

  • Wolf, R. A. (1995). Magnetospheric configuration. In M. G. Kivelson & C. T. Russell (Eds.), Introduction to space physics (pp. 288–329). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Wu, C. S., & Lee, L. C. (1979). A theory of the terrestrial kilometric radiation. The Astrophysical Journal, 230, 621–626.

    Article  ADS  Google Scholar 

  • Wu, D. J. (2003a). Model of nonlinear kinetic Alfvén waves with dissipation and acceleration of energetic electrons. Physical Review E, 67, 027402.

    Article  ADS  Google Scholar 

  • Wu, D. J. (2003b). Dissipative solitary kinetic Alfvén waves and electron acceleration. Physics of Plasmas, 10, 1364–1370.

    Article  ADS  Google Scholar 

  • Wu, D. J. (2010). Kinetic Alfvén waves and their applications in solar and space plasmas. Progress in Physics, 30, 101–172.

    Google Scholar 

  • Wu, D. J. (2012). Kinetic Alfvén wave: Theory, experiment and application. Beijing: Science Press.

    Google Scholar 

  • Wu, D. J., & Chao, J. K. (2003). Auroral electron acceleration by dissipative solitary kinetic Alfvén waves. Physics of Plasmas, 10, 3787–3789.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Chao, J. K. (2004). Model of auroral electron acceleration by dissipative solitary kinetic Alfvén wave. Journal of Geophysical Research, 109, A06211.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Wang, D. Y. (1996). Solitary kinetic Alfvén waves on the ion-acoustic velocity branch in a low-\(\beta \) plasma. Physics of Plasmas, 3, 4304–4306.

    Article  ADS  Google Scholar 

  • Wu, D. J., Huang, G. L., & Wang, D. Y. (1996a). Dipole density solitons and solitary dipole vortices in an inhomogeneous space plasma. Physical Review Letters, 77, 4346–4349.

    Article  ADS  Google Scholar 

  • Wu, D. J., Huang, G. L., Wang, D. Y., & Fälthammar, C. G. (1996b). Solitary kinetic Alfvén waves in the two-fluid model. Physics of Plasmas, 3, 2879–2884.

    Article  ADS  Google Scholar 

  • Wu, D. J., Wang, D. Y., & Fälthammar, C. G. (1995). An analytical solution of finite-amplitude solitary kinetic Alfvén waves. Physics of Plasmas, 2, 4476–4481.

    Article  ADS  Google Scholar 

  • Wu, D. J., Wang, D. Y., & Huang, G. L. (1997). Two dimensional solitary kinetic Alfvén waves and dipole vortex structures. Physics of Plasmas, 4, 611–617.

    Article  ADS  Google Scholar 

  • Yu, M. Y., & Shukla, P. K. (1978). Finite amplitude solitary Alfvén waves. The Physics of Fluids, 21, 1457–1458.

    Article  ADS  Google Scholar 

  • Zabusky, N. J., & Kruskal, M. D. (1965). Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Physical Review Letters, 15, 240–243.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jin Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Nanjing University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, DJ., Chen, L. (2020). KAWs in Magnetosphere-Ionosphere Coupling. In: Kinetic Alfvén Waves in Laboratory, Space, and Astrophysical Plasmas. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-13-7989-5_3

Download citation

Publish with us

Policies and ethics