Skip to main content

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

  • 508 Accesses

Abstract

The existence of AWs, as electromagnetic hydrodynamic waves, was predicted first by Alfvén in (1942), however, the experimental study in laboratory had not been made until 1949. One of important reasons for this delay is that the long wavelength and low frequency characteristics of AWs make them very difficult to study experimentally in laboratory. The similar case happened on KAWs. When KAWs were discovered in 1970’s, their ability to heat plasma particles attracted attention of researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 150, 405–406.

    Article  ADS  Google Scholar 

  • Auerbach, D. W., Carter, T. A., Vincena, S., & Popovich, P. (2010). Control of gradient-driven instabilities using shear Alfvén beat waves. Physical Review Letters, 105, 135005.

    Article  ADS  Google Scholar 

  • Bellan, P. M., & Stasiewicz, K. (1998). Fine-scale cavitation of ionospheric plasma caused by inertial Alfvén wave ponderomoive force. Physical Review Letters, 80, 3523–3526.

    Article  ADS  Google Scholar 

  • Bhatnagar, P. L., Gross, E. P., & Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 94, 511–525.

    Article  ADS  MATH  Google Scholar 

  • Boehm, M. H., Carlson, C. W., McFadden, J. P., et al. (1990). High resolution sounding rocket observations of large amplitude Alfvén waves. Journal of Geophysical Research, 95, 12157–12171.

    Article  ADS  Google Scholar 

  • Borg, G. G., Brennan, M. H., Cross, R. C., et al. (1985). Guided propagation of Alfvén waves in a toroidal plasma. Plasma Physics and Controlled Fusion, 27, 1125–1149.

    Article  ADS  Google Scholar 

  • Burke, A. T., Maggs, J. E., & Morales, G. J. (2000a). Spontaneous fluctuations of a temperature filament in a magnetized plasma. Physical Review Letters, 84, 1451–1454.

    Article  ADS  Google Scholar 

  • Burke, A. T., Maggs, J. E., & Morales, G. J. (2000b). Experimental study of fluctuations excited by a narrow temperature filament in a magnetized plasma. Physics of Plasmas, 7, 1397–1407.

    Article  ADS  Google Scholar 

  • Cao, J. B., Ma, Y. D., Parks, G., et al. (2006). Joint observations by cluster satellites of bursty bulk flows in the magnetotail. Journal of Geophysical Research, 111, 2741–2760.

    Article  Google Scholar 

  • Carter, T. A., Brugman, B., Pribyl, P., & Lybarger, W. (2006). Laboratory observation of a nonlinear interaction between shear Alfvén waves. Physical Review Letters, 96, 155001.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Hull, A. J., Bonnell, J. W., et al. (2007b). Large parallel electric fields, currents, and density cavities in dispersive Alfvén waves above the aurora. Journal of Geophysical Research, 112, A05215.

    Article  ADS  Google Scholar 

  • Chen, L., & Hasegawa, A. (1974a). Plasma heating by spatial resonance of Alfvén wave. Physics of Fluids, 17, 1399–1403.

    Article  ADS  Google Scholar 

  • Chen, L., & Hasegawa, A. (1974b). A theory of long-period magnetic pulsations, 1. Steady state excitation of filed line resonance. Journal of Geophysical Research, 79, 1024–1032.

    Article  ADS  Google Scholar 

  • Chen, L., & Hasegawa, A. (1974c). A theory of long-period magnetic pulsations, 2. Impulse excitation of surface eigenmode. Journal of Geophysical Research, 79, 1033–1037.

    Article  ADS  Google Scholar 

  • Chmyrev, V. M., Bilichenko, S. V., Pokhotelov, O. A., et al. (1988). Alfvén vortices and related phenomena in the ionosphere and the magnetosphere. Physica Scripta, 38, 841–854.

    Article  ADS  Google Scholar 

  • Cross, R. C. (1983). Experimental observations of localized Alfvén and ion acoustic waves in a plasma. Plasma Physics, 25, 1377–1387.

    Article  ADS  Google Scholar 

  • Cross, R. C. (1988). An introduction to Alfvén Waves. Bristol, England: Adam Hilger.

    Google Scholar 

  • Demirkhanov, R. A., Kirov, A. G., Lozovskii, S. N., et al. (1977). Plasma heating in a toroidal system by a helical quadrupole RF field with \(\omega <\omega _{Bi}\). Plasma Physics Controlled Nuclear Fusion Research, 3, 31–37.

    ADS  Google Scholar 

  • Erlandson, R. E., Zanetti, L. J., Acuna, M. H., et al. (1994). Freja observations of electromagnetic ion cyclotron waves and tranverse oxygen ion acceleration on auroral field lines. Geophysical Research Letters, 21, 1855–1858.

    Article  ADS  Google Scholar 

  • Fälthammar, C. G. (1995). In memoriam: Hannes Alfvén. Astrophysics and Space Science, 234, 173–175.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gekelman, W. (1999). Review of laboratory experiments on Alfvén waves and their relationship to space observations. Journal of Geophysical Research, 104, 14417–14435.

    Article  ADS  Google Scholar 

  • Gekelman, W., Leneman, D., Maggs, J. E., & Vincena, S. (1994). Experimental observation of Alfvén cones. Physics of Plasmas, 1, 3775–3783.

    Article  ADS  Google Scholar 

  • Gekelman, W., Pfister, H., Lucky, Z., et al. (1991). Design, construction, and properties of the large plasma research device - The LAPD at UCLA. Review of Scientific Instruments, 62, 2875–2883.

    Article  ADS  Google Scholar 

  • Gekelman, W., Van Zeeland, M., Vincena, S., & Priby, P. (2003). Laboratory experiments on Alfvén waves caused by rapidly expanding plasmas and their relationship to space phenomena. Journal of Geophysical Research, 108, 1281–1291.

    Article  Google Scholar 

  • Golovato, S. N., Shohet, J. L., & Tataronis, J. A. (1976). Alfvén wave heating in the Proto-Cleo stellarator. Physical Review Letters, 37, 1272–1274.

    Article  ADS  Google Scholar 

  • Gross, E. P. (1951). Plasma oscillations in a static magnetic field. Physical Review, 82, 232–242.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hasegawa, A. (1976). Particle acceleration by MHD surface wave and formation of aurora. Journal of Geophysical Research, 81, 5083–5090.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Chen, L. (1974). Plasma heating by Alfvén wave phase mixing. Physical Review Letters, 32, 454–456.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Chen, L. (1975). Kinetic process of plasma heating due to Alfvén wave excitation. Physical Review Letters, 35, 370–373.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Chen, L. (1976a). Kinetic process of plasma heating by resonant mode conversion of Alfvén wave. Physical Fluids, 19, 1924–1934.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Uberoi, C. (1982). The Alfvén Waves. Tech: Inf. Center, US Dept. of Energy, Oak Ridge.

    Google Scholar 

  • Keller, R., & Pochelon, A. (1978). Alfvén wave heating of a theta pinch. Nuclear Fusion, 18, 1051–1057.

    Article  ADS  Google Scholar 

  • Kim, H. C., Stenzel, R. L., & Wong, A. Y. (1974). Development of cavitons and trapping of RF field. Physical Review Letters, 33, 886–889.

    Article  ADS  Google Scholar 

  • Kletzing, C. A., Bounds, S. R., Martin-Hiner, J., et al. (2003a). Measurements of the shear Alfvén wave dispersion for finite perpendicular wave number. Physical Review Letters, 90, 035004.

    Article  ADS  Google Scholar 

  • Kletzing, C. A., Thuecks, D. J., Skiff, F., et al. (2010). Measurements of inertial limit Alfvén wave dispersion for finite perpendicular wave number. Physical Review Letters, 104, 095001.

    Article  ADS  Google Scholar 

  • Koch, R. A., & Horton, W. (1975). Effects of electron angle scattering in plasma waves. Physical Fluids, 18, 861–865.

    Article  ADS  Google Scholar 

  • Kumar, S., Sharma, R. P., & Singh, H. D. (2011). Cavitation by nonlinear interaction between inertial Alfvén waves and magnetosonic waves in low beta plasmas. Solar Physics, 270, 523–535.

    Article  ADS  Google Scholar 

  • Leneman, D., Gekelman, W., & Maggs, J. E. (1999). Laboratory observations of shear Alfvén waves launched from a small source. Physical Review Letters, 82, 2673–2676.

    Article  ADS  Google Scholar 

  • Leneman, D., Gekelman, W., & Maggs, J. E. (2000). Shear Alfvén wave radiation from a source with small transverse scale length. Physical Plasmas, 7, 3934–3946.

    Article  ADS  Google Scholar 

  • Leneman, D., Gekelman, W., & Maggs, J. E. (2006). The plasma source of the Large Plasma Device at University of California, Los Angeles. Review of Scientific Instruments, 77, 015108.

    Article  ADS  Google Scholar 

  • Louarn, P., Wahlund, J. E., Chust, T., et al. (1994). Observations of kinetic Alfvén waves by the Freja spacecraft. Geophysical Research Letters, 21, 1847–1850.

    Article  ADS  Google Scholar 

  • Lundin, R., Eliasson, L., Herendel, G., et al. (1994a). Large-scale auroral plasma density cavities observed by Freja. Geophysical Research Letters, 21, 1903–1906.

    Article  ADS  Google Scholar 

  • Maggs, J. E., & Morales, G. J. (1996). Magnetic fluctuations associated field-aligned striations. Geophysical Research Letters, 23, 633–636.

    Article  ADS  Google Scholar 

  • Maggs, J. E., & Morales, G. J. (1997). Fluctuations associated a filamentary density depletion. Physical Plasmas, 4, 290–299.

    Article  ADS  Google Scholar 

  • Maggs, J. E., & Morales, G. J. (2003). Laboratory realization of an Alfvén wave maser. Physical Review Letters, 91, 035004.

    Article  ADS  Google Scholar 

  • Maggs, J. E., Morales, G. J., & Carter, T. A. (2005). An Alfvén wave maser in the laboratory. Physical Plasmas, 12, 013103.

    Article  ADS  Google Scholar 

  • Mitchell, C., Maggs, J. E., & Gekelman, W. (2002). Field line resonances in a cylindrical plasma. Physical Plasmas, 9, 2009–2018.

    Article  Google Scholar 

  • Mitchell, C., Vincena, S., Maggs, J. E., & Gekelman, W. (2001). Laboratory observation of Alfvén resonance. Geophysical Research Letters, 28, 923–926.

    Article  ADS  Google Scholar 

  • Morales, G. J., & Maggs, J. E. (1997). Structure of kinetic Alfvén waves with small transverse scale length. Physical Plasmas, 4, 4118–4125.

    Article  ADS  Google Scholar 

  • Morales, G. J., Loritsch, R. S., & Maggs, J. E. (1994). Structure of Alfvén waves at the skin-depth scale. Physical Plasmas, 1, 3765–3774.

    Article  ADS  Google Scholar 

  • Obiki, T., Mutoh, T., Adachi, S., et al. (1977). Alfvén-wave heating experiment in the Heliotron-D. Physical Review Letters, 39, 812–815.

    Article  ADS  Google Scholar 

  • Pace, D. C., Shi, M., Maggs, J. E., et al. (2008a). Exponential frequency spectrum in magnetized plasmas. Physical Review Letters, 101, 085001.

    Article  ADS  Google Scholar 

  • Pace, D. C., Shi, M., Maggs, J. E., et al. (2008b). Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas. Physical Plasmas, 15, 122304.

    Article  ADS  Google Scholar 

  • Salem, C. S., Howes, G. G., Sundkvist, D., et al. (2012). Identification of kinetic Alfvén wave turbulence in the solar wind. The Astrophysical Journal Letters, 745, L9.

    Article  ADS  Google Scholar 

  • Sharma, R. P., & Singh, H. D. (2009). Density cavities associated with inertial Alfvén waves in the auroral plasma. Journal of Geophysical Research, 114, A03109.

    Article  ADS  Google Scholar 

  • Shi, M., Pace, D. C., Morales, G. J., et al. (2009). Structures generated in a temperature filament due to drift-wave convection. Physical Plasmas, 16, 062306.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., et al. (2000a). Small scale Alfvénic structure in the aurora, Space Sci. Review, 92, 423–533.

    Google Scholar 

  • Stasiewicz, K., Gustafsson, G., Marklund, G., et al. (1997). Cavity resonators and Alfvén resonance cones observed on Freja. Journal of Geophysical Research, 102, 2565–2575.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Khotyaintsev, Y., & Grzesiak, M. (2004). Dispersive Alfvén Waves observed by Cluster at the magnetopause. Physica Scripta, T107, 171–179.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Khotyaintsev, Y., Berthomier, M., & Wahlund, J. E. (2000b). Identification of widespread turbulence of dispersive Alfvén waves. Geophysical Research Letters, 27, 173–176.

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Seyler, C. E., Mozer, F. S., et al. (2001). Magnetic bubbles and kinetic Alfvén waves in the high-latitude magnetopause boundary. Journal of Geophysical Research, 106, A29503–29514.

    Article  ADS  Google Scholar 

  • Stenzel, R. L., Wong, A. Y., & Kim, H. C. (1974). Conversion of electromagnetic waves to electrostatic waves in inhomogeneous plasmas. Physical Review Letters, 32, 654–657.

    Article  ADS  Google Scholar 

  • Thuecks, D. J., Kletzing, C. A., Skiff, F., et al. (2009). Tests of collision operators using laboratory experiments of shear Alfvén wave dispersion and damping. Physical Plasmas, 16, 052110.

    Article  ADS  Google Scholar 

  • Van Compernolle, B., Gekelman, W., & Pribyl, P. (2006). Generation of suprathermal electrons and Alfvén waves by a high power pulse at the electron plasma frequency. Physical Plasmas, 13, 092112.

    Article  ADS  Google Scholar 

  • Van Compernolle, B., Gekelman, W., Pribyl, P., & Carter, T. A. (2005). Generation of Alfvén waves by high power pulse at the electron plasma frequency. Geophysical Research Letters, 32, L08101.

    ADS  Google Scholar 

  • Van Compernolle, B., Morales, G. J., & Gekelman, W. (2008). Cherenkov radiation of shear Alfvén waves. Physical Plasmas, 15, 082101.

    Article  ADS  Google Scholar 

  • Van Zeeland, M., & Gekelman, W. (2004). Laser-plasma diamagnetism in the presence of an ambient magnetized plasma. Physical Plasmas, 11, 320–323.

    Article  ADS  Google Scholar 

  • Van Zeeland, M., Gekelman, W., Vincena, S., & Dimonte, G. (2001). Production of Alfvén waves by a rapidly expanding dense plasma. Physical Review Letters, 87, 105001.

    Article  ADS  Google Scholar 

  • Van Zeeland, M., Gekelman, W., Vincena, S., & Maggs, J. (2003). Currents and shear Alfvén wave radiation generated by an exploding laser-produced plasma: Perpendicular incidence. Physical Plasmas, 10, 1243–1252.

    Article  ADS  Google Scholar 

  • Vincena, S., Gekelman, W., & Maggs, J. E. (2004). Shear Alfvén wave perpendicular propagation from the kinetic to the inertial regime. Physical Review Letters, 93, 105003.

    Article  ADS  Google Scholar 

  • Volwerk, M., Louarn, P., Chust, T., et al. (1996). Solitary kinetic Alfvén waves-A study of the Poynting flux. Journal of Geophysical Research, 101, 13335–13343.

    Article  ADS  Google Scholar 

  • Weisen, H., Appert, K., Borg, G. G., et al. (1989). Mode conversion to the kinetic Alfvén wave in low-frequency heating experiments in the TCA tokamak. Physical Review Letters, 63, 2476–2479.

    Article  ADS  Google Scholar 

  • Wong, A. Y., & Stenzel, R. L. (1978). Ion acceleration in strong electromagnetic interactions with plasmas. Physical Review Letters, 34, 727–730.

    Article  ADS  Google Scholar 

  • Wu, D. J. (2012). Kinetic Alfvén Wave: Theory. Experiment and Application: Science Press, Beijing.

    Google Scholar 

  • Wu, D. J., & Chao, J. K. (2004b). Recent progress in nonlinear kinetic Alfvén waves. Nonlinear Processes in Geophysics, 11, 631–645.

    Article  ADS  Google Scholar 

  • Wu, D. J., Huang, G. L., & Wang, D. Y. (1996a). Dipole density solitons and solitary dipole vortices in an inhomogeneous space plasma. Physical Review Letters, 77, 4346–4349.

    Article  ADS  Google Scholar 

  • Wu, D. J., Wang, D. Y., & Huang, G. L. (1997). Two dimensional solitary kinetic Alfvén waves and dipole vortex structures. Physical Plasmas, 4, 611–617.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jin Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Nanjing University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, DJ., Chen, L. (2020). Laboratory Experiments of KAWs. In: Kinetic Alfvén Waves in Laboratory, Space, and Astrophysical Plasmas. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-13-7989-5_2

Download citation

Publish with us

Policies and ethics