Advertisement

Evolutionary Relationship of Penicillin-Binding Protein 2 Coding penA Gene and Understanding the Role in Drug-Resistance Mechanism Using Gene Interaction Network Analysis

  • Sravan Kumar Miryala
  • Anand Anbarasu
  • Sudha RamaiahEmail author
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

The class A β-lactamase penA gene codes for penicillin-binding protein 2 (PBP2) which plays an important role in assembling the peptidoglycans on the outer side of the plasma membrane. The alteration in the structure of PBP2 protein makes the pathogen to gain resistance against penicillin. Thus, it is important to understand the role of drug-resistant mechanism by penA gene to develop potent drugs against penicillin-resistant pathogenic strains. In our study, we have used gene interaction network analysis of penA gene in various bacteria to understand its role in drug-resistant mechanisms. We have collected a total of 1039 interactions from 28 organisms available from STRING database. The penA gene interaction network was constructed using Cytoscape 3.6.1. The network analysis has shown that, along with penA gene, the genes murG, ftsW, murC, ftsA, and ftsQ are observed to have more number of interactors and they may be considered as the key candidates to understand the penA drug-resistant mechanism. Functional enrichment analysis has shown the important GO terms and pathways where penA gene plays an important role. We have also elucidated the evolutionary relationship of penA gene in various Gram-positive and Gram-negative bacteria. Our study helps in understanding the drug-resistant patterns of penA gene in various bacteria and also their evolutionary relationships.

Keywords

Penicillin-binding protein 2 penA gene Antimicrobial resistance Gene interaction network Functional enrichment analysis 

Notes

Acknowledgements

The authors gratefully acknowledge the Indian Council of Medical Research (ICMR), Government of India agency for the research grant (IRIS ID: 2014-0099). MSK thanks ICMR for the research fellowship. The authors would like to thank the management of VIT for providing the necessary facilities to carry out this research work.

Conflict of Interest Statement

None declared.

Supplementary material

473632_1_En_2_MOESM1_ESM.xlsx (21 kb)
Supplementary material 1 (XLS 22 KB)
473632_1_En_2_MOESM2_ESM.xlsx (23 kb)
Supplementary material 2 (XLS 24 KB)

References

  1. 1.
    Nikaido, H.: Multidrug resistance in bacteria. Annu. Rev. Biochem. 119–146 (2009).  https://doi.org/10.1146/annurev.biochem.78.082907.145923.multidrug
  2. 2.
    Munita, J.M., Bayer, A.S., Arias, C.A.: Evolving resistance among gram-positive pathogens. Clin. Infect. Dis. 61, S48–S57 (2015).  https://doi.org/10.1093/cid/civ523CrossRefGoogle Scholar
  3. 3.
    Zapun, A., Morlot, C., Taha, M.-K.: Resistance to β-Lactams in Neisseria ssp due to chromosomally encoded penicillin-binding proteins. Antibiotics 5, 35 (2016).  https://doi.org/10.3390/antibiotics5040035CrossRefGoogle Scholar
  4. 4.
    Thulin, S., Olcén, P., Fredlund, H., Unemo, M.: Total variation in the penA gene of Neisseria meningitidis: correlation between susceptibility to β-lactam antibiotics and penA gene heterogeneity. Antimicrob. Agents Chemother. 50, 3317–3324 (2006).  https://doi.org/10.1128/AAC.00353-06CrossRefGoogle Scholar
  5. 5.
    Powell, A.J., Tomberg, J., Deacon, A.M., et al.: Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. J. Biol. Chem. 284, 1202–1212 (2009).  https://doi.org/10.1074/jbc.M805761200CrossRefGoogle Scholar
  6. 6.
    Sanders, C.C., Sanders, W.E.: β-Lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin. Infect. Dis. 15, 824–839 (1992).  https://doi.org/10.1093/clind/15.5.824MathSciNetCrossRefGoogle Scholar
  7. 7.
    Anitha, P., Anbarasu, A., Ramaiah, S.: Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii. Comput. Biol. Med. 48, 17–27 (2014).  https://doi.org/10.1016/j.compbiomed.2014.02.009CrossRefGoogle Scholar
  8. 8.
    Anitha, P., Anbarasu, A., Ramaiah, S.: Gene network analysis reveals the association of important functional partners involved in antibiotic resistance: a report on an important pathogenic bacterium Staphylococcus aureus. Gene 575, 253–263 (2016).  https://doi.org/10.1016/j.gene.2015.08.068CrossRefGoogle Scholar
  9. 9.
    Parimelzaghan, A., Anbarasu, A., Ramaiah, S.: Gene network analysis of metallo beta lactamase family proteins indicates the role of gene partners in antibiotic resistance and reveals important drug targets. J. Cell. Biochem. 117, 1330–1339 (2016).  https://doi.org/10.1002/jcb.25422CrossRefGoogle Scholar
  10. 10.
    Miryala, S.K., Ramaiah, S.: Exploring the multi-drug resistance in Escherichia coli O157 : H7 by gene interaction network : a systems biology approach. Genomics (2018)  https://doi.org/10.1016/j.ygeno.2018.06.002
  11. 11.
    Miryala, S.K., Anbarasu, A., Ramaiah, S.: Discerning molecular interactions: a comprehensive review on biomolecular interaction databases and network analysis tools. Gene 642 (2018).  https://doi.org/10.1016/j.gene.2017.11.028CrossRefGoogle Scholar
  12. 12.
    Szklarczyk, D., Morris, J.H., Cook, H., et al.: The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).  https://doi.org/10.1093/nar/gkw937CrossRefGoogle Scholar
  13. 13.
    Shannon, P., Markiel, A., Ozier, O., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2498–2504 (2003).  https://doi.org/10.1101/gr.1239303.metabolite
  14. 14.
    Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 1–27 (2003).  https://doi.org/10.1186/1471-2105-4-2CrossRefGoogle Scholar
  15. 15.
    Assenov, Y., Ramírez, F., Schelhorn, S.E.S.E., et al.: Computing topological parameters of biological networks. Bioinformatics 24, 282–284 (2008).  https://doi.org/10.1093/bioinformatics/btm554CrossRefGoogle Scholar
  16. 16.
    Kumar, S., Stecher, G., Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).  https://doi.org/10.1093/molbev/msw054CrossRefGoogle Scholar
  17. 17.
    Török, M.E., Chantratita, N., Peacock, S.J.: Bacterial gene loss as a mechanism for gain of antimicrobial resistance. Curr. Opin. Microbiol. 15, 583–587 (2012).  https://doi.org/10.1016/j.mib.2012.07.008CrossRefGoogle Scholar
  18. 18.
    Ohnishi, M., Watanabe, Y., Ono, E., et al.: Spread of a chromosomal cefixime-resistant penA gene among different Neisseria gonorrhoeae lineages. Antimicrob. Agents Chemother. 54, 1060–1067 (2010).  https://doi.org/10.1128/AAC.01010-09CrossRefGoogle Scholar
  19. 19.
    Nikolaidis, I., Favini-Stabile, S., Dessen, A.: Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci. 23, 243–259 (2014).  https://doi.org/10.1002/pro.2414CrossRefGoogle Scholar
  20. 20.
    Kouidmi, I., Levesque, R.C., Paradis-Bleau, C.: The biology of Mur ligases as an antibacterial target. Mol. Microbiol. 94, 242–253 (2014).  https://doi.org/10.1111/mmi.12758CrossRefGoogle Scholar
  21. 21.
    Vollmer, W., Blanot, D., De Pedro, M.A.: Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).  https://doi.org/10.1111/j.1574-6976.2007.00094.xCrossRefGoogle Scholar
  22. 22.
    Cameron, J.C., Pakrasi, H.B.: Glutathione facilitates antibiotic resistance and photosystem I stability during exposure to gentamicin in cyanobacteria. Appl. Environ. Microbiol. 77, 3547–3550 (2011).  https://doi.org/10.1128/AEM.02542-10CrossRefGoogle Scholar
  23. 23.
    Ranjit, D.K., Jorgenson, M.A., Young, K.D.: PBP1B glycosyltransferase and transpeptidase activities play different essential roles during the de novo regeneration of rod morphology in Escherichia coli. J. Bacteriol. 199 (2017).  https://doi.org/10.1128/jb.00612-16
  24. 24.
    Leski, T.A., Tomasz, A.: Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus. J. Bacteriol. 2, 1815–1824 (2005).  https://doi.org/10.1128/jb.187.5.1815
  25. 25.
    Sibold, C., Henrichsen, J., König, A., et al.: Mosaic pbpX genes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol. Microbiol. 12, 1013–1023 (1994).  https://doi.org/10.1111/j.1365-2958.1994.tb01089.xCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Medical and Biological Computing Laboratory, School of Biosciences and TechnologyVellore Institute of Technology (VIT)VelloreIndia

Personalised recommendations