Skip to main content

Evolutionary Relationship of Penicillin-Binding Protein 2 Coding penA Gene and Understanding the Role in Drug-Resistance Mechanism Using Gene Interaction Network Analysis

  • Conference paper
  • First Online:
Emerging Technologies for Agriculture and Environment

Abstract

The class A β-lactamase penA gene codes for penicillin-binding protein 2 (PBP2) which plays an important role in assembling the peptidoglycans on the outer side of the plasma membrane. The alteration in the structure of PBP2 protein makes the pathogen to gain resistance against penicillin. Thus, it is important to understand the role of drug-resistant mechanism by penA gene to develop potent drugs against penicillin-resistant pathogenic strains. In our study, we have used gene interaction network analysis of penA gene in various bacteria to understand its role in drug-resistant mechanisms. We have collected a total of 1039 interactions from 28 organisms available from STRING database. The penA gene interaction network was constructed using Cytoscape 3.6.1. The network analysis has shown that, along with penA gene, the genes murG, ftsW, murC, ftsA, and ftsQ are observed to have more number of interactors and they may be considered as the key candidates to understand the penA drug-resistant mechanism. Functional enrichment analysis has shown the important GO terms and pathways where penA gene plays an important role. We have also elucidated the evolutionary relationship of penA gene in various Gram-positive and Gram-negative bacteria. Our study helps in understanding the drug-resistant patterns of penA gene in various bacteria and also their evolutionary relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikaido, H.: Multidrug resistance in bacteria. Annu. Rev. Biochem. 119–146 (2009). https://doi.org/10.1146/annurev.biochem.78.082907.145923.multidrug

  2. Munita, J.M., Bayer, A.S., Arias, C.A.: Evolving resistance among gram-positive pathogens. Clin. Infect. Dis. 61, S48–S57 (2015). https://doi.org/10.1093/cid/civ523

    Article  Google Scholar 

  3. Zapun, A., Morlot, C., Taha, M.-K.: Resistance to β-Lactams in Neisseria ssp due to chromosomally encoded penicillin-binding proteins. Antibiotics 5, 35 (2016). https://doi.org/10.3390/antibiotics5040035

    Article  Google Scholar 

  4. Thulin, S., Olcén, P., Fredlund, H., Unemo, M.: Total variation in the penA gene of Neisseria meningitidis: correlation between susceptibility to β-lactam antibiotics and penA gene heterogeneity. Antimicrob. Agents Chemother. 50, 3317–3324 (2006). https://doi.org/10.1128/AAC.00353-06

    Article  Google Scholar 

  5. Powell, A.J., Tomberg, J., Deacon, A.M., et al.: Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. J. Biol. Chem. 284, 1202–1212 (2009). https://doi.org/10.1074/jbc.M805761200

    Article  Google Scholar 

  6. Sanders, C.C., Sanders, W.E.: β-Lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin. Infect. Dis. 15, 824–839 (1992). https://doi.org/10.1093/clind/15.5.824

    Article  MathSciNet  Google Scholar 

  7. Anitha, P., Anbarasu, A., Ramaiah, S.: Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii. Comput. Biol. Med. 48, 17–27 (2014). https://doi.org/10.1016/j.compbiomed.2014.02.009

    Article  Google Scholar 

  8. Anitha, P., Anbarasu, A., Ramaiah, S.: Gene network analysis reveals the association of important functional partners involved in antibiotic resistance: a report on an important pathogenic bacterium Staphylococcus aureus. Gene 575, 253–263 (2016). https://doi.org/10.1016/j.gene.2015.08.068

    Article  Google Scholar 

  9. Parimelzaghan, A., Anbarasu, A., Ramaiah, S.: Gene network analysis of metallo beta lactamase family proteins indicates the role of gene partners in antibiotic resistance and reveals important drug targets. J. Cell. Biochem. 117, 1330–1339 (2016). https://doi.org/10.1002/jcb.25422

    Article  Google Scholar 

  10. Miryala, S.K., Ramaiah, S.: Exploring the multi-drug resistance in Escherichia coli O157 : H7 by gene interaction network : a systems biology approach. Genomics (2018) https://doi.org/10.1016/j.ygeno.2018.06.002

  11. Miryala, S.K., Anbarasu, A., Ramaiah, S.: Discerning molecular interactions: a comprehensive review on biomolecular interaction databases and network analysis tools. Gene 642 (2018). https://doi.org/10.1016/j.gene.2017.11.028

    Article  Google Scholar 

  12. Szklarczyk, D., Morris, J.H., Cook, H., et al.: The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017). https://doi.org/10.1093/nar/gkw937

    Article  Google Scholar 

  13. Shannon, P., Markiel, A., Ozier, O., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2498–2504 (2003). https://doi.org/10.1101/gr.1239303.metabolite

  14. Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 1–27 (2003). https://doi.org/10.1186/1471-2105-4-2

    Article  Google Scholar 

  15. Assenov, Y., Ramírez, F., Schelhorn, S.E.S.E., et al.: Computing topological parameters of biological networks. Bioinformatics 24, 282–284 (2008). https://doi.org/10.1093/bioinformatics/btm554

    Article  Google Scholar 

  16. Kumar, S., Stecher, G., Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016). https://doi.org/10.1093/molbev/msw054

    Article  Google Scholar 

  17. Török, M.E., Chantratita, N., Peacock, S.J.: Bacterial gene loss as a mechanism for gain of antimicrobial resistance. Curr. Opin. Microbiol. 15, 583–587 (2012). https://doi.org/10.1016/j.mib.2012.07.008

    Article  Google Scholar 

  18. Ohnishi, M., Watanabe, Y., Ono, E., et al.: Spread of a chromosomal cefixime-resistant penA gene among different Neisseria gonorrhoeae lineages. Antimicrob. Agents Chemother. 54, 1060–1067 (2010). https://doi.org/10.1128/AAC.01010-09

    Article  Google Scholar 

  19. Nikolaidis, I., Favini-Stabile, S., Dessen, A.: Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci. 23, 243–259 (2014). https://doi.org/10.1002/pro.2414

    Article  Google Scholar 

  20. Kouidmi, I., Levesque, R.C., Paradis-Bleau, C.: The biology of Mur ligases as an antibacterial target. Mol. Microbiol. 94, 242–253 (2014). https://doi.org/10.1111/mmi.12758

    Article  Google Scholar 

  21. Vollmer, W., Blanot, D., De Pedro, M.A.: Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008). https://doi.org/10.1111/j.1574-6976.2007.00094.x

    Article  Google Scholar 

  22. Cameron, J.C., Pakrasi, H.B.: Glutathione facilitates antibiotic resistance and photosystem I stability during exposure to gentamicin in cyanobacteria. Appl. Environ. Microbiol. 77, 3547–3550 (2011). https://doi.org/10.1128/AEM.02542-10

    Article  Google Scholar 

  23. Ranjit, D.K., Jorgenson, M.A., Young, K.D.: PBP1B glycosyltransferase and transpeptidase activities play different essential roles during the de novo regeneration of rod morphology in Escherichia coli. J. Bacteriol. 199 (2017). https://doi.org/10.1128/jb.00612-16

  24. Leski, T.A., Tomasz, A.: Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus. J. Bacteriol. 2, 1815–1824 (2005). https://doi.org/10.1128/jb.187.5.1815

  25. Sibold, C., Henrichsen, J., König, A., et al.: Mosaic pbpX genes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol. Microbiol. 12, 1013–1023 (1994). https://doi.org/10.1111/j.1365-2958.1994.tb01089.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Indian Council of Medical Research (ICMR), Government of India agency for the research grant (IRIS ID: 2014-0099). MSK thanks ICMR for the research fellowship. The authors would like to thank the management of VIT for providing the necessary facilities to carry out this research work.

Conflict of Interest Statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudha Ramaiah .

Editor information

Editors and Affiliations

2.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 22

 KB)

473632_1_En_2_MOESM2_ESM.xlsx

Supplementary material 2 (XLS 24 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miryala, S.K., Anbarasu, A., Ramaiah, S. (2020). Evolutionary Relationship of Penicillin-Binding Protein 2 Coding penA Gene and Understanding the Role in Drug-Resistance Mechanism Using Gene Interaction Network Analysis. In: Subramanian, B., Chen, SS., Reddy, K. (eds) Emerging Technologies for Agriculture and Environment. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-7968-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7968-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7967-3

  • Online ISBN: 978-981-13-7968-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics