Skip to main content

Simultaneous Saccharification and Fermentation of Watermelon Waste for Ethanol Production

  • Conference paper
  • First Online:
Emerging Technologies for Agriculture and Environment

Abstract

As the world oil reserves are draining day by day, new resources of carbon and hydrogen must be investigated to supply our energy and industrial needs. An extensive amount of biomass is accessible in many parts of the world and could be utilized either directly or as crude material for the production of different fuels. The motivation behind the present research is to find an appropriate strain for the fermentation of watermelon waste to get ethanol. Saccharification and fermentation (SSF) of watermelon waste were carried out simultaneously in the presence of A. niger and S. cerevisiae (toddy origin and baker’s yeast). Toddy originated S. cerevisiae culture is found to be more active than that of baker’s yeast. For the ethanol production, the optimized conditions for different parameters like temperature, time, strain and pH are finalized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matharu, A.S., de Melo, E.M., Houghton, J.A.: Opportunity for high value-added chemicals from food supply chain wastes. Bioresour. Technol. 215, 123–130 (2016). https://doi.org/10.1016/j.biortech.2016.03.039

    Article  Google Scholar 

  2. Ong, K.L., Kaur, G., Pensupa, N., Uisan, K., Lin, C.S.: Trends in food waste valorization for the production of chemicals, materials and fuels: case study South and Southeast Asia. Bioresour. Technol. 248, 100–112 (2018). https://doi.org/10.1016/j.biortech.2017.06.076

    Article  Google Scholar 

  3. Jha, S.N., Vishwakarma, R.K., Ahmad, T., Rai, A., Dixit, A.K.: Report on Assessment of Quantitative Harvest and Post-harvest Losses of Major Crops and Commodities in India. All India Coordinated Research Project on Post-Harvest Technology, ICAR-CIPHET (2015)

    Google Scholar 

  4. Mannepula, S., Bathal, V.K., Obulam, V.S.: A comparative study on utilisation of citrus and mango peels for lactic acid production and optimisation by Rhizopus oryzae in submerged fermentation. Eur. J. Biotechnol. Biosci. 3, 18–26 (2015)

    Google Scholar 

  5. Lin, C.S., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S.: Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sc. 6(2), 426–464 (2013)

    Article  Google Scholar 

  6. Fakir, A.D., Waghmare, J.S.: Watermelon waste: a potential source of omega-6 fatty acid and proteins. Int. J. Chem. Tech. Res. 10(6), 384–392 (2017)

    Google Scholar 

  7. Simpson, R., Morris, G.A.: The anti-diabetic potential of polysaccharides extracted from members of the cucurbit family: a review. Bioact. Carbohydr. Dietary Fibre 3(2), 106–114 (2014)

    Article  Google Scholar 

  8. Rahman, H., Manjula, K., Anoosha, T., Nagaveni, K., Eswaraiah, C.M., Bardalai, D.: In-vitro antioxidant activity of Citrullus lanatus seed extracts. Asian J. Pharm. Clin. Res. 6(3), 152–157 (2013)

    Google Scholar 

  9. Colivet, J., Oliveira, A.L., Carvalho, R.A.: Influence of the bed height on the kinetics of watermelon seed oil extraction with pressurized ethanol. Sep. Purif. Technol. 169, 187–195 (2016). https://doi.org/10.1016/j.seppur.2016.06.020

    Article  Google Scholar 

  10. Directorate of Economics and Statistics: Agricultural Statistics at a Glance 2014, p. 206. Oxford University Press, New Delhi (2014)

    Google Scholar 

  11. Kumar, C., Mythily, R., Chandraju, S.: Studies on sugars extracted from water melon (Citrullus lanatus) rind, a remedy for related waste and its management. Int. J. Chem. Anal. Sci. 3(8), 1527–1529 (2012)

    Google Scholar 

  12. Souad, A.M., Jamal, P., Olorunnisola, K.S.: Effective jam preparations from watermelon waste. Int. Food Res. J. 19(4), 1545–1549 (2012)

    Google Scholar 

  13. Fang, Y.Z., Yang, S., Wu, G.: Free radicals, antioxidants, and nutrition. Nutrition 18(10), 872–879 (2002). https://doi.org/10.1016/S0899-9007(02)00916-4

    Article  Google Scholar 

  14. Marletta, M.A.: Nitric oxide: biosynthesis and biological significance. Trends Biochem. Sci. 14(12), 488–492 (1989). https://doi.org/10.1016/0968-0004(89)90181-3

    Article  Google Scholar 

  15. Mohamed, S.A., Al-Malki, A.L., Khan, J.A., Kabli, S.A., Al-Garni, S.M.: Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds. J. Microbiol. 51(5), 605–611 (2013). https://doi.org/10.1007/s12275-013-3016-x

    Article  Google Scholar 

  16. Chaudhari, S.A., Singhal, R.S.: Cutin from watermelon peels: a novel inducer for cutinase production and its physicochemical characterization. Int. J. Biol. Macromol. 79, 398–404 (2015). https://doi.org/10.1016/j.ijbiomac.2015.05.006

    Article  Google Scholar 

  17. Chatterjee, S., Barman, S., Chakraborty, R.: Far infrared radiated energy-proficient rapid one-pot green hydrolysis of waste watermelon peel: optimization and heterogeneous kinetics of glucose synthesis. RSC Adv. 6(78), 74278–74287 (2016). https://doi.org/10.1039/C6RA13391

    Article  Google Scholar 

  18. Banerjee, K., Ramesh, S.T., Gandhimathi, R., Nidheesh, P.V., Bharathi, K.S.: A novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions. Iran J. Energy Environ. 3(2), 143–156 (2012). https://doi.org/10.5829/idosi.ijee.2012.03.02.0396

    Article  Google Scholar 

  19. Memon, G.Z., Bhanger, M.I., Akhtar, M., Talpur, F.N., Memon, J.R.: Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent. Chem. Eng. J. 138(1–3), 616–621 (2008). https://doi.org/10.1016/j.cej.2007.09.027

    Article  Google Scholar 

  20. Lee, S.J., Shin, J.S, Park, K.W., Hong, Y.P.: Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon [Citrullus lanantus (Thunb.) Mansf.] germplasm. Theor. Appl. Genet. 92(6), 719–725. https://doi.org/10.1007/bf00226094

    Article  Google Scholar 

  21. Ministry of New and Renewable Energy: Annual report. New Delhi. http://mnre.gov.in/mission-and-vision-2/publications/annual-report-2/ (2016). Accessed on 15 Mar 2017

  22. Wang, M.C., Saricks, D.S.: Effects on Fuel Ethanol Use on Fuel-Cycle Energy and Green House Gas Emissions. Agronne National Laboratory, Agrone, IL (1999)

    Google Scholar 

  23. Ministry of New and renewable Energy: National Policy on Biofuels. http://mnre.gov.in/file-manager/UserFiles/biofuel_policy.pdf (2013). Accessed on 15 Mar 2017

  24. Kamm, B., Kamm, M.: Principles of biorefineries. Appl. Microbiol. Biotechnol. 64(2), 137–145 (2004). https://doi.org/10.1007/s00253-003-1537-7

    Article  Google Scholar 

  25. Postma, P.R., Barbosa, M.J., Wijffels, R.H., Eppink, M.H., Olivieri, G.: Microalgal biorefinery for bulk and high-value products. In: Handbook of Electroporation, vol 3, pp. 2205–2224. Springer International Publishing (2017)

    Google Scholar 

  26. Shinde, S.D., Meng, X., Kumar, R., Ragauskas, A.J.: Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 20(10), 2192–2205 (2018). https://doi.org/10.1039/C8GC00353J

    Article  Google Scholar 

  27. Oliveira, C.M., Pavao, L.V., Ravagnani, M.A., Cruz, A.J., Costa, C.B.: Process integration of a multiperiod sugarcane biorefinery. Appl. Energy 213, 520–539 (2018). https://doi.org/10.1016/j.apenergy.2017.11.020

    Article  Google Scholar 

  28. Agarwal, A.K., Agarwal, R.A., Gupta, T., Gurjar, B.R. (eds.): Biofuels: Technology, Challenges and Prospects. Springer (2017)

    Google Scholar 

  29. Fuel ethanol production worldwide in 2017, by country (in million gallons). https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/

  30. Kim, S.L., Kim, W.J., Lee, S.Y., Byun, S.M.: Alcohol fermentation of Korean watermelon juice. Appl. Biol. Chem. 27(3), 139–145 (1984)

    Google Scholar 

  31. Song, B.Y.: Inventor method for production of bio-ethanol using watermelon seeds. United States patent US 8,642,300

    Google Scholar 

  32. Alex, S., Saira, A., Nair, D.S., Soni, K.B., Sreekantan, L., Rajmohan, K., Reghunath, B.R.: Bioethanol production from watermelon rind by fermentation using Saccharomyces cerevisiae and Zymomonas mobilis. Indian J. Biotechnol. 16, 663–666 (2017)

    Google Scholar 

  33. Darwin, R.O., Alexandra, A., Elena, M., Manjunatha, B., Bryan, R.B., Subbareddy, G.V., Maddela, N.R., Rajeswari, B.: Comparative study of native microorganisms isolated from watermelon (Citrullus lanatus) waste and commercial microorganism (Clostridium thermocellum) used for bioethanol production. Afr. J. Biotechnol. 16(9), 380–387 (2017). https://doi.org/10.5897/AJB2016.15643

    Article  Google Scholar 

  34. Barnett, J.A., Payne, R.W., Yarrow, D.: Yeasts: Characteristics and Identification. Cambridge University Press (1983)

    Google Scholar 

  35. Caputi, A., Ueda, M., Brown, T.: Spectrophotometric determination of ethanol in wine. Am. J. Enol. Vitic. 19(3), 160–165 (1968)

    Google Scholar 

  36. Svetlana, N., Ljiljana, M., Marica, R., Dusanka, P., Savic, D.: A microwave-assisted liquefaction as a pretreatment for the bioethanol production by the simultaneous saccharification and fermentation of corn meal. Chem. Ind. ChemnEng. Q. 14(4), 231–234 (2008)

    Article  Google Scholar 

  37. Kunlan, L., Lixin, X., Jun, L., Jun, P., Guoyoing, C., Zuwei, X.: Salt-assisted acid hydrolysis of starch to d-glucose under microwave irradiation. Carbohydr. Res. 331, 9–12 (2001). https://doi.org/10.1016/S0008-6215(00)00311-6

    Article  Google Scholar 

  38. Fish, W.W., Bruton, B.D., Russo, V.M.: Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production. Biotechnol. Biofuel. 2(1), 18 (2009). https://doi.org/10.1186/1754-6834-2-18

    Article  Google Scholar 

  39. Fogarty, M.W.: Microbial amylases. In: Fogarty, W.M. (ed.) Microbial Enzymes and Biotechnology, pp. 1–92. Applied Science Publishers Ltd., London, UK (1983)

    Google Scholar 

  40. Hayashida, S., Teramoto, Y.: Production and characteristics of raw-starch-digesting a-amylase from a protease negative Aspergillus ficuum mutant. Appl. Environ. Microbiol. 52, 1068–1073 (1986)

    Google Scholar 

  41. Carlsen, M., Nielsen, J., Nielsen, J.: Growth and a-amylase production by Aspergillus oryzae during continuous cultivations. J. Biotechnol. 45, 81–93 (1996). https://doi.org/10.1016/0168-1656(95)00147-6

    Article  Google Scholar 

  42. Djekrif-Dakhmouche, S., Gheribi-Aoulmi, Z., Meraihi, Z., Bennamoun, L.: Application of a statistical design to the optimization of culture medium for a-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. J. Food Eng. 73, 190–197 (2005). https://doi.org/10.1016/j.jfoodeng.2005.01.021

    Article  Google Scholar 

  43. Moller, K., Sharif, M.Z., Olsson, L.: Production of fungal a-amylase by Saccharomyces kluyveri in glucose-limited cultivations. J. Biotechnol. 111, 311–318 (2004). https://doi.org/10.1016/j.jbiotec.2004.04.013

    Article  Google Scholar 

  44. Knox, A.M., du Preez, J.C., Kilian, S.G.: Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomyces fibuligera. Enzym. Microb. Technol. 34, 453–460 (2004). https://doi.org/10.1016/j.enzmictec.2003.12.010

    Article  Google Scholar 

  45. Ezejiofor, T.I., Enenebeaku, U.E., Enenebeaku, C.K., Nwankwo, M.U., Ogbonnaya, C.I.: Comparative study of bioethanol yield from yam, potato, watermelon, and pineapple peels using different concentrations of hydrochloric acid. World News Nat. Sci. 16, 18–32 (2018)

    Google Scholar 

  46. Bhandari, S.V., Panchapakesan, A., Shankar, N., Kumar, H.A.: Production of bioethanol from fruit rinds by saccharification and fermentation. Int. J. Sci. Res. Eng. Technol. 2(6), 362–365 (2013)

    Google Scholar 

  47. Sandhu, H., Bajaj, K.L., Arneja, J.S.: Cellulolytic saccharification of rice straw and ethanol production. Indian J. Agric. Biochem. 10(1&2), 19–22 (1997)

    Google Scholar 

  48. Lee, J.M., Pollard, J.F., Coulman, G.A.: Ethanol fermentation with cell recycling: computer simulation. Biotechnol. Bioeng. 22, 497 (1983). https://doi.org/10.1002/bit.260250215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Nadh Ratnakaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ratnakaram, V.N., Prakasa Rao, C.G., Sree, S. (2020). Simultaneous Saccharification and Fermentation of Watermelon Waste for Ethanol Production. In: Subramanian, B., Chen, SS., Reddy, K. (eds) Emerging Technologies for Agriculture and Environment. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-7968-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7968-0_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7967-3

  • Online ISBN: 978-981-13-7968-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics