Advertisement

Simultaneous Saccharification and Fermentation of Watermelon Waste for Ethanol Production

  • Venkata Nadh RatnakaramEmail author
  • C. G. Prakasa Rao
  • Satya Sree
Conference paper
  • 176 Downloads
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

As the world oil reserves are draining day by day, new resources of carbon and hydrogen must be investigated to supply our energy and industrial needs. An extensive amount of biomass is accessible in many parts of the world and could be utilized either directly or as crude material for the production of different fuels. The motivation behind the present research is to find an appropriate strain for the fermentation of watermelon waste to get ethanol. Saccharification and fermentation (SSF) of watermelon waste were carried out simultaneously in the presence of A. niger and S. cerevisiae (toddy origin and baker’s yeast). Toddy originated S. cerevisiae culture is found to be more active than that of baker’s yeast. For the ethanol production, the optimized conditions for different parameters like temperature, time, strain and pH are finalized.

Keywords

SSF Bioethanol production Biowaste Water melon Fruit waste 

References

  1. 1.
    Matharu, A.S., de Melo, E.M., Houghton, J.A.: Opportunity for high value-added chemicals from food supply chain wastes. Bioresour. Technol. 215, 123–130 (2016).  https://doi.org/10.1016/j.biortech.2016.03.039CrossRefGoogle Scholar
  2. 2.
    Ong, K.L., Kaur, G., Pensupa, N., Uisan, K., Lin, C.S.: Trends in food waste valorization for the production of chemicals, materials and fuels: case study South and Southeast Asia. Bioresour. Technol. 248, 100–112 (2018).  https://doi.org/10.1016/j.biortech.2017.06.076CrossRefGoogle Scholar
  3. 3.
    Jha, S.N., Vishwakarma, R.K., Ahmad, T., Rai, A., Dixit, A.K.: Report on Assessment of Quantitative Harvest and Post-harvest Losses of Major Crops and Commodities in India. All India Coordinated Research Project on Post-Harvest Technology, ICAR-CIPHET (2015)Google Scholar
  4. 4.
    Mannepula, S., Bathal, V.K., Obulam, V.S.: A comparative study on utilisation of citrus and mango peels for lactic acid production and optimisation by Rhizopus oryzae in submerged fermentation. Eur. J. Biotechnol. Biosci. 3, 18–26 (2015)Google Scholar
  5. 5.
    Lin, C.S., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S.: Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sc. 6(2), 426–464 (2013)CrossRefGoogle Scholar
  6. 6.
    Fakir, A.D., Waghmare, J.S.: Watermelon waste: a potential source of omega-6 fatty acid and proteins. Int. J. Chem. Tech. Res. 10(6), 384–392 (2017)Google Scholar
  7. 7.
    Simpson, R., Morris, G.A.: The anti-diabetic potential of polysaccharides extracted from members of the cucurbit family: a review. Bioact. Carbohydr. Dietary Fibre 3(2), 106–114 (2014)CrossRefGoogle Scholar
  8. 8.
    Rahman, H., Manjula, K., Anoosha, T., Nagaveni, K., Eswaraiah, C.M., Bardalai, D.: In-vitro antioxidant activity of Citrullus lanatus seed extracts. Asian J. Pharm. Clin. Res. 6(3), 152–157 (2013)Google Scholar
  9. 9.
    Colivet, J., Oliveira, A.L., Carvalho, R.A.: Influence of the bed height on the kinetics of watermelon seed oil extraction with pressurized ethanol. Sep. Purif. Technol. 169, 187–195 (2016).  https://doi.org/10.1016/j.seppur.2016.06.020CrossRefGoogle Scholar
  10. 10.
    Directorate of Economics and Statistics: Agricultural Statistics at a Glance 2014, p. 206. Oxford University Press, New Delhi (2014)Google Scholar
  11. 11.
    Kumar, C., Mythily, R., Chandraju, S.: Studies on sugars extracted from water melon (Citrullus lanatus) rind, a remedy for related waste and its management. Int. J. Chem. Anal. Sci. 3(8), 1527–1529 (2012)Google Scholar
  12. 12.
    Souad, A.M., Jamal, P., Olorunnisola, K.S.: Effective jam preparations from watermelon waste. Int. Food Res. J. 19(4), 1545–1549 (2012)Google Scholar
  13. 13.
    Fang, Y.Z., Yang, S., Wu, G.: Free radicals, antioxidants, and nutrition. Nutrition 18(10), 872–879 (2002).  https://doi.org/10.1016/S0899-9007(02)00916-4CrossRefGoogle Scholar
  14. 14.
    Marletta, M.A.: Nitric oxide: biosynthesis and biological significance. Trends Biochem. Sci. 14(12), 488–492 (1989).  https://doi.org/10.1016/0968-0004(89)90181-3CrossRefGoogle Scholar
  15. 15.
    Mohamed, S.A., Al-Malki, A.L., Khan, J.A., Kabli, S.A., Al-Garni, S.M.: Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds. J. Microbiol. 51(5), 605–611 (2013).  https://doi.org/10.1007/s12275-013-3016-xCrossRefGoogle Scholar
  16. 16.
    Chaudhari, S.A., Singhal, R.S.: Cutin from watermelon peels: a novel inducer for cutinase production and its physicochemical characterization. Int. J. Biol. Macromol. 79, 398–404 (2015).  https://doi.org/10.1016/j.ijbiomac.2015.05.006CrossRefGoogle Scholar
  17. 17.
    Chatterjee, S., Barman, S., Chakraborty, R.: Far infrared radiated energy-proficient rapid one-pot green hydrolysis of waste watermelon peel: optimization and heterogeneous kinetics of glucose synthesis. RSC Adv. 6(78), 74278–74287 (2016).  https://doi.org/10.1039/C6RA13391CrossRefGoogle Scholar
  18. 18.
    Banerjee, K., Ramesh, S.T., Gandhimathi, R., Nidheesh, P.V., Bharathi, K.S.: A novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions. Iran J. Energy Environ. 3(2), 143–156 (2012).  https://doi.org/10.5829/idosi.ijee.2012.03.02.0396CrossRefGoogle Scholar
  19. 19.
    Memon, G.Z., Bhanger, M.I., Akhtar, M., Talpur, F.N., Memon, J.R.: Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent. Chem. Eng. J. 138(1–3), 616–621 (2008).  https://doi.org/10.1016/j.cej.2007.09.027CrossRefGoogle Scholar
  20. 20.
    Lee, S.J., Shin, J.S, Park, K.W., Hong, Y.P.: Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon [Citrullus lanantus (Thunb.) Mansf.] germplasm. Theor. Appl. Genet. 92(6), 719–725.  https://doi.org/10.1007/bf00226094CrossRefGoogle Scholar
  21. 21.
    Ministry of New and Renewable Energy: Annual report. New Delhi. http://mnre.gov.in/mission-and-vision-2/publications/annual-report-2/ (2016). Accessed on 15 Mar 2017
  22. 22.
    Wang, M.C., Saricks, D.S.: Effects on Fuel Ethanol Use on Fuel-Cycle Energy and Green House Gas Emissions. Agronne National Laboratory, Agrone, IL (1999)Google Scholar
  23. 23.
    Ministry of New and renewable Energy: National Policy on Biofuels. http://mnre.gov.in/file-manager/UserFiles/biofuel_policy.pdf (2013). Accessed on 15 Mar 2017
  24. 24.
    Kamm, B., Kamm, M.: Principles of biorefineries. Appl. Microbiol. Biotechnol. 64(2), 137–145 (2004).  https://doi.org/10.1007/s00253-003-1537-7CrossRefGoogle Scholar
  25. 25.
    Postma, P.R., Barbosa, M.J., Wijffels, R.H., Eppink, M.H., Olivieri, G.: Microalgal biorefinery for bulk and high-value products. In: Handbook of Electroporation, vol 3, pp. 2205–2224. Springer International Publishing (2017)Google Scholar
  26. 26.
    Shinde, S.D., Meng, X., Kumar, R., Ragauskas, A.J.: Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 20(10), 2192–2205 (2018).  https://doi.org/10.1039/C8GC00353JCrossRefGoogle Scholar
  27. 27.
    Oliveira, C.M., Pavao, L.V., Ravagnani, M.A., Cruz, A.J., Costa, C.B.: Process integration of a multiperiod sugarcane biorefinery. Appl. Energy 213, 520–539 (2018).  https://doi.org/10.1016/j.apenergy.2017.11.020CrossRefGoogle Scholar
  28. 28.
    Agarwal, A.K., Agarwal, R.A., Gupta, T., Gurjar, B.R. (eds.): Biofuels: Technology, Challenges and Prospects. Springer (2017)Google Scholar
  29. 29.
    Fuel ethanol production worldwide in 2017, by country (in million gallons). https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/
  30. 30.
    Kim, S.L., Kim, W.J., Lee, S.Y., Byun, S.M.: Alcohol fermentation of Korean watermelon juice. Appl. Biol. Chem. 27(3), 139–145 (1984)Google Scholar
  31. 31.
    Song, B.Y.: Inventor method for production of bio-ethanol using watermelon seeds. United States patent US 8,642,300Google Scholar
  32. 32.
    Alex, S., Saira, A., Nair, D.S., Soni, K.B., Sreekantan, L., Rajmohan, K., Reghunath, B.R.: Bioethanol production from watermelon rind by fermentation using Saccharomyces cerevisiae and Zymomonas mobilis. Indian J. Biotechnol. 16, 663–666 (2017)Google Scholar
  33. 33.
    Darwin, R.O., Alexandra, A., Elena, M., Manjunatha, B., Bryan, R.B., Subbareddy, G.V., Maddela, N.R., Rajeswari, B.: Comparative study of native microorganisms isolated from watermelon (Citrullus lanatus) waste and commercial microorganism (Clostridium thermocellum) used for bioethanol production. Afr. J. Biotechnol. 16(9), 380–387 (2017).  https://doi.org/10.5897/AJB2016.15643CrossRefGoogle Scholar
  34. 34.
    Barnett, J.A., Payne, R.W., Yarrow, D.: Yeasts: Characteristics and Identification. Cambridge University Press (1983)Google Scholar
  35. 35.
    Caputi, A., Ueda, M., Brown, T.: Spectrophotometric determination of ethanol in wine. Am. J. Enol. Vitic. 19(3), 160–165 (1968)Google Scholar
  36. 36.
    Svetlana, N., Ljiljana, M., Marica, R., Dusanka, P., Savic, D.: A microwave-assisted liquefaction as a pretreatment for the bioethanol production by the simultaneous saccharification and fermentation of corn meal. Chem. Ind. ChemnEng. Q. 14(4), 231–234 (2008)CrossRefGoogle Scholar
  37. 37.
    Kunlan, L., Lixin, X., Jun, L., Jun, P., Guoyoing, C., Zuwei, X.: Salt-assisted acid hydrolysis of starch to d-glucose under microwave irradiation. Carbohydr. Res. 331, 9–12 (2001).  https://doi.org/10.1016/S0008-6215(00)00311-6CrossRefGoogle Scholar
  38. 38.
    Fish, W.W., Bruton, B.D., Russo, V.M.: Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production. Biotechnol. Biofuel. 2(1), 18 (2009).  https://doi.org/10.1186/1754-6834-2-18CrossRefGoogle Scholar
  39. 39.
    Fogarty, M.W.: Microbial amylases. In: Fogarty, W.M. (ed.) Microbial Enzymes and Biotechnology, pp. 1–92. Applied Science Publishers Ltd., London, UK (1983)Google Scholar
  40. 40.
    Hayashida, S., Teramoto, Y.: Production and characteristics of raw-starch-digesting a-amylase from a protease negative Aspergillus ficuum mutant. Appl. Environ. Microbiol. 52, 1068–1073 (1986)Google Scholar
  41. 41.
    Carlsen, M., Nielsen, J., Nielsen, J.: Growth and a-amylase production by Aspergillus oryzae during continuous cultivations. J. Biotechnol. 45, 81–93 (1996).  https://doi.org/10.1016/0168-1656(95)00147-6CrossRefGoogle Scholar
  42. 42.
    Djekrif-Dakhmouche, S., Gheribi-Aoulmi, Z., Meraihi, Z., Bennamoun, L.: Application of a statistical design to the optimization of culture medium for a-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. J. Food Eng. 73, 190–197 (2005).  https://doi.org/10.1016/j.jfoodeng.2005.01.021CrossRefGoogle Scholar
  43. 43.
    Moller, K., Sharif, M.Z., Olsson, L.: Production of fungal a-amylase by Saccharomyces kluyveri in glucose-limited cultivations. J. Biotechnol. 111, 311–318 (2004).  https://doi.org/10.1016/j.jbiotec.2004.04.013CrossRefGoogle Scholar
  44. 44.
    Knox, A.M., du Preez, J.C., Kilian, S.G.: Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomyces fibuligera. Enzym. Microb. Technol. 34, 453–460 (2004).  https://doi.org/10.1016/j.enzmictec.2003.12.010CrossRefGoogle Scholar
  45. 45.
    Ezejiofor, T.I., Enenebeaku, U.E., Enenebeaku, C.K., Nwankwo, M.U., Ogbonnaya, C.I.: Comparative study of bioethanol yield from yam, potato, watermelon, and pineapple peels using different concentrations of hydrochloric acid. World News Nat. Sci. 16, 18–32 (2018)Google Scholar
  46. 46.
    Bhandari, S.V., Panchapakesan, A., Shankar, N., Kumar, H.A.: Production of bioethanol from fruit rinds by saccharification and fermentation. Int. J. Sci. Res. Eng. Technol. 2(6), 362–365 (2013)Google Scholar
  47. 47.
    Sandhu, H., Bajaj, K.L., Arneja, J.S.: Cellulolytic saccharification of rice straw and ethanol production. Indian J. Agric. Biochem. 10(1&2), 19–22 (1997)Google Scholar
  48. 48.
    Lee, J.M., Pollard, J.F., Coulman, G.A.: Ethanol fermentation with cell recycling: computer simulation. Biotechnol. Bioeng. 22, 497 (1983).  https://doi.org/10.1002/bit.260250215CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.GITAM UniversityBengaluruIndia
  2. 2.Department of BiotechnologySKD UniversityAnantapurIndia
  3. 3.Department of ChemistryVFSTRVadlamudiIndia

Personalised recommendations