Skip to main content

VCE Overpressure Prediction by CFD Modelling

  • Chapter
  • First Online:
Risk Analysis of Vapour Cloud Explosions for Oil and Gas Facilities

Abstract

This chapter explores the mechanism of gas explosion and demonstrates its computational fluid dynamic (CFD) simulation procedure. The fundamental partial differential equations, which govern the fluid flow and other explosion processes employed in the numerical models for calculation of VCEs, are presented. FLACS is adopted for the evaluation of the potential VCEs in oil and gas industries. The CFD simulation theories in FLACS regarding the flame turbulence, geometry condition and fluid–obstacle interaction, etc., are discussed. The flow chart for the simulation procedure along with gas explosion examples is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelgayed, R. G., Bradley, D., & Lawes, M. (1987). Turbulent burning velocities—A general correlation in terms of straining rates. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 414(1847), 389–413. https://doi.org/10.1098/rspa.1987.0150.

    Article  Google Scholar 

  • Arntzen, B. J. (1998). Modelling of turbulence and combustion for simulation of gas explosions in complex geometries. (Ph.D.), The Norwegian University Norway.

    Google Scholar 

  • Bakke, J. R., & Hjertager, B. H. (1986). The effect of explosion venting in obstructed channels. In Modeling and simulation in engineering (pp. 237–241). Amsterdam: Elsevier Science Publication.

    Google Scholar 

  • Bjerketvedt, D., Bakke, J. R., & vanWingerden, K. (1997). Gas explosion handbook. Journal of Hazardous Materials, 52(1), 1–150.

    Article  Google Scholar 

  • Bray, K. N. C. (1990). Studies of the turbulent burning velocities. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 431, 315–335.

    Article  Google Scholar 

  • Ferrara, G., Di Benedetto, A., Salzano, E., & Russo, G. (2006). CFD analysis of gas explosions vented through relief pipes. Journal of Hazardous Materials, 137(2), 654–665. https://doi.org/10.1016/j.jhazmat.2006.03.037.

    Article  Google Scholar 

  • Hjertager, B. H. (1982). Simulation of transient compressible turbulent reactive flows. Composites science and Technology, 27, 159–170.

    Google Scholar 

  • Hjertager, B. H. (1984). Computer-simulation of turbulent reactive gas-dynamics. Modeling Identification and Control, 5(4), 211–236.

    Article  Google Scholar 

  • Hjertager, B. H. (1993). Computer modeling of turbulent gas-explosions in complex 2d and 3d geometries. Journal of Hazardous Materials, 34(2), 173–197. https://doi.org/10.1016/0304-3894(93)85004-X.

    Article  Google Scholar 

  • Kee, R. J., Miller, J. A., & Jefferson, T. H. (1980). CHEMKIN: A general purpose, problem-independent, chemical kinetics code package. Sandia report, SAND80-8003, Livermore, California 94551.

    Google Scholar 

  • Kee, R. J. (1987). The Chemkin thermodynamic data base. Sandia report, SAND87-8215B. UC-4, Livermore, California 94551.

    Google Scholar 

  • Kuchta, J. M. (1985), Investigation of fire and explosion accidents in the chemical, mining and fuel-related industries—A manual. United States Department of the interior, Bureau of Mines, Bulletin 680.

    Google Scholar 

  • Kuo, K. K. (1986). Principles of combustion. New York: Wiley.

    Google Scholar 

  • Launder, B. E., & Spalding, D. B. (1974). The numerical computation of the turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289.

    Article  Google Scholar 

  • NTS. (2001). Risk and emergency preparedness analysis, NORSOK STANDARD in Z-013, Rev. 2, 2001-09-01, Norway.

    Google Scholar 

  • Patankar, S. V. (1980). Numerical heat transfer and fluid flow. London: Hemisphere Publishing corporation.

    MATH  Google Scholar 

  • Patankar, S. V. (1981). A calculation procedure for two-dimensional elliptic situations. Numerical Heat Transfer, 4(4), 409–425.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, G., Huang, Y., Li, J. (2019). VCE Overpressure Prediction by CFD Modelling. In: Risk Analysis of Vapour Cloud Explosions for Oil and Gas Facilities. Springer, Singapore. https://doi.org/10.1007/978-981-13-7948-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7948-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7947-5

  • Online ISBN: 978-981-13-7948-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics