Skip to main content

Finite Time Observer Design for Teleoperation System

  • Chapter
  • First Online:
Analysis and Design for Networked Teleoperation System
  • 288 Accesses

Abstract

The finite-time output feedback synchronization control problem is considered for a bilateral teleoperation system in the presence of the modeling error and disturbance. A new observer is designed for the velocity estimation by using neural network approximation and fast terminal sliding mode method. It is shown that the resulting velocity error system is semi-globally finite-time stable. The observer based output feedback finite-time controller is developed by employing a novel nonsingular fast integral terminal sliding mode. The closed-loop system is proved to be semi-globally stable and the master-slave synchronization error converges to zero in finite time. Compared with the existing controllers, the designed controller of this paper only uses the position information and renders the master-slave synchronization error reaching zero in the given finite time. Simulation and experiment are performed and the results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Artigas, C. Preusche, G. Hirzinger et al., Bilateral energy transfer in delayed teleoperation on the time domain, in IEEE International Conference on Robotics and Automation, pp. 19–23 (2008)

    Google Scholar 

  2. I. Sarras, E. Nu\(\tilde{n}\)o, M. Kinnaert, L. Basa\(\tilde{n}\)ez, Output-feedback control of nonlinear bilateral teleoperators, in American Control Conference (ACC), pp. 27–29 (2012)

    Google Scholar 

  3. C.P. Tan, X.H. Yu, Z.H. Man, Terminal sliding mode observers for a class of nonlinear systems. Automatica 46(8), 1401–1404 (2010)

    Article  MathSciNet  Google Scholar 

  4. B. Zhang, Y.M. Jia, F. Matsuno, Finite-time observers for multi-agent systems without velocity measurements and with input saturation. Syst. Control Lett. 68(1), 86–94 (2014)

    Article  MathSciNet  Google Scholar 

  5. J. Davila, L. Fridman, A. Levant, Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control 50(11), 1785–1789 (2005)

    Article  MathSciNet  Google Scholar 

  6. J.M. Daly, D.W.L. Wang, Time-delayed output feedback bilateral teleoperation with force estimation for n-dof nonlinear manipulators. IEEE Trans. Control Syst. Technol. 22(1), 299–306 (2014)

    Article  Google Scholar 

  7. D.Y. Zhao, S.Y. Li, Q.M. Zhu, Output feedback terminal sliding mode control for a class of second order nonlinear systems. Asian J. Control 15(1), 237–247 (2013)

    Article  MathSciNet  Google Scholar 

  8. Q.L. Hu, B. Xiao, D.W. Wang, Spacecraft attitude fault tolerant control with terminal sliding mode observer. J. Aerosp. Eng. 15(1), 1–15 (2013)

    MathSciNet  Google Scholar 

  9. J. Wang, C. Zhang, S. Li et al., Finite-time output feedback control for pwm-based dc-dc buck power converters of current sensorless mode. IEEE Trans. Control Syst. Technol. 25(4), 1359–1371 (2017)

    Article  Google Scholar 

  10. H.B. Sun, S.H. Li, C.Y. Sun, Finite time integral sliding mode control of hypersonic vehicles. IEEE Trans. Fuzzy Syst. 73(1–2), 229–244 (2013)

    MathSciNet  MATH  Google Scholar 

  11. S. Laghrouche, F. Plestan, A. Glumineau, Higher order sliding mode control based on integral sliding mode. Automatica 43(3), 531–537 (2007)

    Article  MathSciNet  Google Scholar 

  12. S.H. Yu, X.J. Long, Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica 54, 158–165 (2015)

    Article  MathSciNet  Google Scholar 

  13. S. Kamal, A. Raman, B. Bandyopadyay, Finite-time stabilization of fractional order uncertain chain of integrator: an integral sliding mode approach. IEEE Trans. Autom. Control 58(6), 1597–1602 (2013)

    Article  MathSciNet  Google Scholar 

  14. S.H. Yu, X.H. Yu, B. Shirinzadeh, Z.H. Man, Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  Google Scholar 

  15. Y.N. Yang, C.C. Hua, J.P. Li, X.P. Guan, Fixed-time coordination control for bilateral telerobotics system with asymmetric time-varying delays. J. Intell. Robot. Syst. 86(3–4), 447–466 (2017)

    Article  Google Scholar 

  16. F.L. Lewis, A. Yesildirak, S. Jagannathan, Neural Network Control of Robot Manipulators and Nonlinear Systems (Taylor & Francis, 1998)

    Google Scholar 

  17. A. Forouzantabar, H.A. Talebi, A.K. Sedigh, Adaptive neural network control of bilateral teleoperation with constant time delay. Nonlinear Dyn. 67(2), 1123–1134 (2012)

    Article  MathSciNet  Google Scholar 

  18. Y. J. Liu, J. Li, S. C. Tong, C.L. Philip Chen, Neural network control-based adaptive learning design for nonlinear systems with full-state constraints. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1562–1571 (2016)

    Article  MathSciNet  Google Scholar 

  19. C.C. Hua, Y.N. Yang, X.P. Guan, Neural network-based adaptive position tracking control for bilateral teleoperation under constant time delay. Neurocomputing 113(3), 204–212 (2013)

    Article  Google Scholar 

  20. M. Farza, M.M. Saad, M. Triki et al., High gain observer for a class of non-triangular systems. Syst. Control Lett. 60(1), 27–35 (2011)

    Article  MathSciNet  Google Scholar 

  21. N. Chopra, P. Berestesky, M.W. Spong, Bilateral teleoperation over unreliable communication networks. IEEE Trans. Control Syst. Technol. 16(2), 304–313 (2008)

    Article  Google Scholar 

  22. Y. Feng, X.H. Yu, Z.H. Man, Non-singular terminal sliding mode control of rigid manipualtors. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  Google Scholar 

  23. L. Yang, J.Y. Yang, Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changchun Hua .

Appendix

Appendix

Proof: The specific prove procedure for the FTSM finite-time velocity observer will be divided into three steps.

Step1: Let us consider the following Lyapunov candidate

$$\begin{aligned} U_{1}=\tilde{x}_{i}^{T}P_{i}\tilde{x}_{i}+\tilde{W}_{i}^{T}P_{i2}\varOmega _{i}^{-1}\tilde{W}_{i} \end{aligned}$$
(A.1)

Differentiating \(U_{1}\) with respect to time yields

$$\begin{aligned} \begin{aligned} \dot{U}_{1} \le \,&\tilde{x}_{i}^{T}(P_{i}A_{i}+A_{i}^{T}P_{i})\tilde{x}_{i}+2\tilde{x}_{i}^{T}P_{i}H_{i}\\&+2\tilde{x}_{i}^{T}P_{i}\Delta Q_{i}+2\tilde{x}_{i}^{T}P_{i}\nu _{i}-2\tilde{W}_{i}P_{i2}\varOmega _{i}^{-1}\overset{\cdot }{\hat{W}}_{i} \end{aligned} \end{aligned}$$
(A.2)

With the Young inequality, we have \(2\tilde{x}_{i}^{T}P_{i}H_{i}\le \frac{1}{\varepsilon _{i}}\tilde{x}_{i}^{T}P_{i}P_{i}\tilde{x}_{i}+\varepsilon _{i}H_{i}^{T}H_{i}\), \(\varepsilon _{i}\) is a positive constant. Since \(C_{i}(y_{i},\bar{x}_{i2})\bar{x}_{i2}\) is Lipschitz, thus \(\varepsilon _{i}H_{i}^{T}H_{i}\le \varepsilon _{i}\bar{C}_{i}^{2}\left\| \widetilde{\bar{x}}_{i2}\right\| ^{2}\), where \(\bar{C}_{i}\) is a positive constant. Furthermore, with the transformation \(\tilde{x}_{i2}=\widetilde{\bar{x}}_{i2}-T_{i}\tilde{x}_{i1}\), we have \(\bar{C}_{i}^{2}\left\| \widetilde{\bar{x}}_{i2}\right\| ^{2}\le 2\bar{C}_{i}^{2}\left\| \tilde{x}_{i2}\right\| ^{2}+2\bar{C}_{i}^{2}\left\| T_{i}\right\| ^{2}\left\| \tilde{x}_{i1}\right\| ^{2}\).

According to Remark 1 yields \(\left\| W_{i}^{*T}\varphi _{i}(y_{i},\hat{x}_{i2})-W_{i}^{*T}\varphi _{i}(y_{i},x_{i2})\right\| \le b_{i}\left\| \tilde{x}_{i2}\right\| \), \(b_{i}\) is a positive constant. Additionally, one has that \(2\tilde{x}_{i}^{T}P_{i}N_{i}\le \dfrac{1}{z_{i}}\tilde{x}_{i}^{T}P_{i}P_{i}\tilde{x}_{i}+z_{i}N_{i}^{T}N_{i}\le \dfrac{1}{z_{i}}\tilde{x}_{i}^{T}P_{i}P_{i}\tilde{x}_{i}+z_{i}b_{i}^{2}\left\| \tilde{x}_{i2}\right\| ^{2}\), \(z_{i}\) is a positive constant.

Afterwards, substituting the NNs adaptive tuning law \(\overset{\cdot }{\hat{W}}_{i}=-\varOmega _{i}\varphi _{i}(y_{i},\hat{x}_{i2})\)

\(\tilde{x}_{i2}^{T}\) into (A.2) yields

$$\begin{aligned} \begin{aligned} \dot{U}_{1} \le&\tilde{x}_{i}^{T}(P_{i}A_{i}+A_{i}^{T}P_{i}+\frac{1}{\varepsilon _{i}}P_{i}P_{i}+\frac{1}{z_{i}}P_{i}P_{i}\\&+\varPsi _{i})\tilde{x}_{i}+2\tilde{x}_{i2}^{T}P_{i2}\epsilon _{i}^{*}+2\tilde{x}_{i}^{T}P_{i}\nu _{i} \end{aligned} \end{aligned}$$
(A.3)

With \(O_{i}=P_{i}A_{i}+A_{i}^{T}P_{i}+\dfrac{1}{\varepsilon _{i}}P_{i}P_{i}+\dfrac{1}{z_{i}}P_{i}P_{i}+\varPsi _{i}<0\), \(\Lambda _{i}=-\lambda _{\max }(O_{i})\), \(\varPsi _{i}=diag(2\varepsilon _{i}\bar{C}_{i}^{2}\left\| T_{i}\right\| ^{2}I_{n},0_{n\times n})+\) \(diag(0_{n\times n},2\varepsilon _{i}\bar{C}_{i}^{2}I_{n})+\) \(diag(0_{n\times n},z_{i}b_{i}^{2}I_{n})\), it has that

$$\begin{aligned} \begin{aligned} \dot{U}_{1} <&-\Lambda _{i}\left\| \tilde{x}_{i}\right\| ^{2}-2k_{i1}\underset{j=1}{\overset{n}{\sum }}p_{i1j}\left| \tilde{x}_{i1j}\right| -2P_{ik1}\tilde{x}_{i}\\&~~~-2k_{i1}^{r_{i1}}P_{ik2}\tilde{x}_{i}-2k_{i1}^{r_{i2}}P_{ik3}\tilde{x}_{i}+2\tilde{x}_{i2}^{T}P_{i2}\epsilon _{i}^{*}\nonumber \\&\le -\left\| \tilde{x}_{i}\right\| (\Lambda _{i}\left\| \tilde{x}_{i}\right\| -2k_{i1}^{r_{i1}}\sqrt{\underset{j=1}{\overset{n}{\sum }}k_{i2}^{2}p_{i2j}^{2}}-2k_{i1}^{r_{i2}}\sqrt{\underset{j=1}{\overset{n}{\sum }}k_{i3}^{2}p_{i2j}^{2}}\nonumber \\&\ \ -2\sqrt{\underset{j=1}{\overset{n}{\sum }}p_{i2j}^{2}\chi _{ij}^{2}}-2\sqrt{\underset{j=1}{\overset{n}{\sum }}p_{i2j}^{2}\epsilon _{ij}^{*2}})\nonumber \end{aligned} \end{aligned}$$
(A.4)

where

$$\begin{aligned} P_{ik1}&=[0_{1\times n},p_{i21}\chi _{i1}sign(\tilde{x}_{i11})\cdots p_{i2n}\chi _{in}sign(\tilde{x}_{i1n})],\\ P_{ik2}&=[0_{1\times n},p_{i21}k_{i2}sign(\tilde{x}_{i11})\cdots p_{i2n}k_{i2}sign(\tilde{x}_{i1n})],\\ P_{ik3}&=[0_{1\times n},p_{i21}k_{i3}sign(\tilde{x}_{i11})\cdots p_{i2n}k_{i3}sign(\tilde{x}_{i1n})]. \end{aligned}$$

Furthermore, we can obtain that \(U_{1}<0\) with \(\left\| \tilde{x}_{i}\right\| >R_{i}\), where

$$ R_{i}=\frac{2k_{i1}^{r_{i1}}\sqrt{\underset{j=1}{\overset{n}{\sum }}k_{i2}^{2}p_{i2j}^{2}}+2k_{i1}^{\ r_{i2}}\sqrt{\underset{j=1}{\overset{n}{\sum }}k_{i3}^{2}p_{i2j}^{2}}+2\sqrt{\underset{j=1}{\overset{n}{\sum }}p_{i2j}^{2}\chi _{ij}^{2}}+2\sqrt{\underset{j=1}{\overset{n}{\sum }}p_{i2j}^{2}\epsilon _{ij}^{*2}}}{\Lambda _{i}}$$

This implies that if \(\left\| \tilde{x}_{i}\right\| \) is outside the ball with radius \(R_{i}\), then \(U_{1}<0\), the \(\left\| \tilde{x}_{i}\right\| \) will reduce, resulting in \(\left\| \tilde{x}_{i}\right\| \) being bounded by \(\left\| \tilde{x}_{i}\right\| \le R_{i}\). Therefore, there exists a moment \(t_{0}\) such that \(\left\| \tilde{x}_{i}\right\| =\bar{R}_{i}\), where \(\bar{R}_{i}>R_{i}\).

Step2: Consider Lyapunov function \(U_{2}=\frac{1}{2}p_{i1j}\tilde{x}_{i1j}^{2}\), differentiating \(U_{2}\), we have

$$\begin{aligned} \dot{U}_{2}=p_{i1j}\overset{\cdot }{\tilde{x}}_{i1j} \end{aligned}$$
(A.5)

Applying Eq. (11.14), we can obtain that

$$\begin{aligned} \dot{U}_{2}\le -p_{i1j}(l_{i1j}-a_{i1j})\tilde{x}_{i1j}^{2}-p_{i1j}\left| \tilde{x}_{i1j}\right| (k_{i1}-\left| \tilde{x}_{i2j}\right| ) \end{aligned}$$
(A.6)

Set \(l_{i1j}-a_{i1j}=\omega _{i}>0\) and \(k_{i1}-\bar{R}_{i}=\varrho _{i}>0\), we have \(\dot{U}_{2}\le -p_{i1j}\omega _{i}\tilde{x}_{i1j}^{2}-p_{i1j}\varrho _{i}\left| \tilde{x}_{i1j}\right| =-2\omega _{i}U_{2}-\sqrt{2p_{i1j}}\varrho _{i}U_{2}^{1/2}\). Hence the \(\tilde{x}_{i1}\) and \(\overset{\cdot }{\tilde{x}}_{i1}\)will converge to zero in finite time with the convergence time \(t_{j}\le \frac{1}{\omega _{i}}\ln (1+\dfrac{2\omega _{i}U_{2}^{1/2}(\bar{R}_{i})}{\sqrt{2p_{i1j}}\varrho _{i}})+t_{0}\) \((j=1,2,\ldots ,n)\).

Step3: When the sliding mode \(\tilde{x}_{i1}=\overset{\cdot }{\tilde{x}}_{i1}=0\), which causes \(\nu _{i1}=-\tilde{x}_{i2}\), then \(\nu _{i2}=-k_{i2}\left| \tilde{x}_{i2}\right| ^{r_{i1}}sign(\tilde{x}_{i2})-k_{i3}\left| \tilde{x}_{i2}\right| ^{r_{i2}}sign(\tilde{x}_{i2})\). Consider the Lyapunov function \(U_{3}=\tilde{x}_{i2}^{T}P_{i2}\tilde{x}_{i2}\), with the results obtained in Step1, the boundedness of \(\hat{W}_{i}^{T}\varphi _{i}(y_{i},\hat{x}_{i2})-W_{i}^{*T}\varphi _{i}(y_{i},\hat{x}_{i2})\) can be achieved. Differentiating \(U_{3}\) with Lemma 2 yields

$$\begin{aligned} \begin{aligned} \dot{U}_{3} <&\tilde{x}_{i2}^{T}(-2P_{i2}T_{i}+\frac{1}{\varepsilon _{i}}P_{i2}P_{i2}+\frac{1}{z_{i}}P_{i2}P_{i2}+\varepsilon _{i}\bar{C}_{i}^{2}I_{n}+z_{i}b_{i}^{2}I_{n})\tilde{x}_{i2}\\&~~~+2\underset{j=1}{\overset{n}{\sum }}p_{i2j}\tilde{x}_{i2j}\digamma _{i}-2\underset{j=1}{\overset{n}{\sum }}\chi _{ij}p_{i2j}\left| \tilde{x}_{i2j}\right| \nonumber \\&~~~-2k_{i2}\lambda _{\min }(P_{i2})n^{1-r_{i1}/2}(\tilde{x}_{i2}^{T}\tilde{x}_{i2})^{r_{i1}+1/2}\nonumber \\&~~~-2k_{i3}\lambda _{\min }(P_{i2})(\tilde{x}_{i2}^{T}\tilde{x}_{i2})^{r_{i2}+1/2}\nonumber \\&\le \tilde{x}_{i2}^{T}(-2P_{i2}T_{i}+\frac{1}{\varepsilon _{i}}P_{i2}P_{i2}+\frac{1}{z_{i}}P_{i2}P_{i2}+\varepsilon _{i}C_{i}^{2}I_{n}+z_{i}b_{i}^{2}I_{n})\tilde{x}_{i2}\nonumber \\&~~~+2\underset{j=1}{\overset{n}{\sum }}p_{i2j}\tilde{x}_{i2j}\digamma _{ij}-2\underset{j=1}{\overset{n}{\sum }}\chi _{ij}p_{i2j}\left| \tilde{x}_{i2j}\right| \nonumber \\&~~~-2k_{i2}n^{1-r_{i1}/2}\frac{\lambda _{\min }(P_{i2})}{\lambda _{\max }(P_{i2})^{r_{i1}+1/2}}U_{3}^{r_{i1}+1/2}\nonumber \\&~~~-2k_{i3}\frac{\lambda _{\min }(P_{i2})}{\lambda _{\max }(P_{i2})^{r_{i2}+1/2}}U_{3}{}^{r_{i2}+1/2}\nonumber \end{aligned} \end{aligned}$$
(A.7)

When \(-2P_{i2}T_{i}+\frac{1}{\varepsilon _{i}}P_{i}P_{i}+\frac{1}{z_{i}}P_{i}P_{i}+\varepsilon _{i}\bar{C}_{i}^{2}I_{n}+z_{i}b_{i}^{2}I_{n}<0\) and \(\chi _{ij}\ge \digamma _{i}\), then we have \(\dot{U}_{3}<-2k_{i2}n^{1-r_{i1}/2}\frac{\lambda _{\min }(P_{i2})}{\lambda _{\max }(P_{i2})^{r_{i1}+1/2}}U_{3}^{r_{i1}+1/2}-2k_{i3}\frac{\lambda _{\min }(P_{i2})}{\lambda _{\max }(P_{i2})^{r_{i2}+1/2}}U_{3}{}^{r_{i2}+1/2}\)

\(=-\psi _{i1}U_{3}^{r_{i1}+1/2}-\psi _{i2}U_{3}{}^{r_{i2}+1/2}\), where \(\psi _{i1}=2k_{i2}n^{1-r_{i1}/2}\frac{\lambda _{\min }(P_{i2})}{\lambda _{\max }(P_{i2})^{^{r_{i1}+1/2}}}\) and \(\psi _{i2}=2k_{i3}\frac{\lambda _{\min }(P_{i2})}{\lambda _{\max }(P_{i2})^{r_{i2}+1/2}}\). Set \(\psi =\sqrt{U_{3}}\), with Eq. (A.7) we have \(\dot{\psi }=\frac{1}{2\sqrt{U_{3}}}\dot{U}_{3}=-\psi _{i1}\psi ^{r_{i1}}-\psi _{i2}\psi ^{r_{i2}}\). According to Lemma 1, it has that the \(\psi \) will converge to zero within the settling time \(T=\frac{1}{\psi _{i1}}\frac{1}{r_{i1}-1}+\frac{1}{\psi _{i2}}\frac{1}{1-r_{i2}}\). Based on the definitions of \(\psi \) and \(U_{3}\), we also can obtain that \(\tilde{x}_{i2}\) will converge to zero in finite time within the settling time T. Therefore the settling time of the velocity observer is \(T_{2}=T+\max (t_{1},\ldots ,t_{n})\). This completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hua, C., Yang, Y., Yang, X., Guan, X. (2019). Finite Time Observer Design for Teleoperation System. In: Analysis and Design for Networked Teleoperation System. Springer, Singapore. https://doi.org/10.1007/978-981-13-7936-9_11

Download citation

Publish with us

Policies and ethics