The TEES Lineup: Non-powered TEES, Powered TEES, and the Dual MES/TEES Approach

  • Seiji KakehataEmail author
  • Tsukasa Ito


While the endoscope plays the starring role in transcanal endoscopic ear surgery (TEES), TEES has a supporting cast of equipment that have helped guarantee its success, particularly the 3-charged-coupled device (CCD) camera and more recently the complementary metal-oxide semiconductor (CMOS) cameras connected to video monitors. These cameras and monitors, which were originally high definition (HD) and more recently ultra HD or 4K, combine to produce clear images that allow surgeons to confidently perform transcanal surgery with an endoscope within the delicate anatomical structures of the middle ear.


  1. 1.
    Tono T, Aoyagi M, Ito M, et al. Staging of middle ear cholesteatoma. Otol Jpn. 2010;20:743–5.Google Scholar
  2. 2.
    Tono T, Sakagami M, Kojima H, et al. Staging and classification criteria for middle ear cholesteatoma proposed by the Japan Otological Society. Auris Nasus Larynx. 2017;44(2):135–40.CrossRefGoogle Scholar
  3. 3.
    Yung M, Tono T, Olszewska E, et al. EAONO/JOS joint consensus statements on the definitions, classification and staging of middle ear cholesteatoma. J Int Adv Otol. 2017;13:1–8.CrossRefGoogle Scholar
  4. 4.
    Schuknecht HF, Gulya AJ. Anatomy of the temporal bone with surgical implications. 3rd ed. New York: Informa Health Care USA; 2007. p. 116–23.Google Scholar
  5. 5.
    Tos M. Manual of middle ear surgery. Vol. 2 Mastoid surgery and reconstructive procedures. New York: Thieme Medical Publishers; 1995. p. 258–60.Google Scholar
  6. 6.
    Tarabichi M. Endoscopic management of acquired cholesteatoma. Am J Otol. 1997;18:544–9.PubMedGoogle Scholar
  7. 7.
    Tarabichi M. Endoscopic management of limited attic cholesteatoma. Laryngoscope. 2004;114:1157–62.CrossRefGoogle Scholar
  8. 8.
    Marchioni D, Mattioli F, Alicandri-Ciufelli M, et al. Endoscopic approach to tensor fold in patients with attic cholesteatoma. Acta Otolaryngol. 2009;129:946–54.CrossRefGoogle Scholar
  9. 9.
    Presutti L, Marchioni D. Endoscopic ear surgery – principles, indications, and techniques. New York: Thieme; 2015.Google Scholar
  10. 10.
    Kakehata S, Watanabe T, Ito T, et al. Extension of indications for transcanal endoscopic ear surgery using an ultrasonic bone curette for cholesteatomas. Otol Neurotol. 2014;35:101–7.CrossRefGoogle Scholar
  11. 11.
    Ito T, Kubota T, Watanabe T, et al. Transcanal endoscopic ear surgery for pediatric population with a narrow external auditory canal. J Laryngol Otol. 2016;130(S3):S101.CrossRefGoogle Scholar
  12. 12.
    Kanoto M, Sugai Y, Hosoya T, et al. Detectability and anatomical correlation of middle ear cholesteatoma using fused thin slice non echo planar imaging diffusion-weighted image and magnetic resonance cisternography (FTS-nEPID). Magn Reson Imaging. 2015;33(10):1253–7.CrossRefGoogle Scholar
  13. 13.
    Watanabe T, Ito T, Furukawa T, et al. The efficacy of color mapped fusion images in the diagnosis and treatment of cholesteatoma using transcanal endoscopic ear surgery. Otol Neurotol. 2015;36(5):763–8.CrossRefGoogle Scholar
  14. 14.
    Watanabe T, Ito T, Furukawa T, et al. The efficacy of color mapped diffusion weighted images combined with CT in the diagnosis and treatment of cholesteatoma using transcanal endoscopic ear surgery. Otol Neurotol. 2015;36(10):1663–8.CrossRefGoogle Scholar
  15. 15.
    Más-Estellés F, Mateos-Fernández M, Carrascosa-Bisquert B, et al. Contemporary non-echo-planar diffusion-weighted imaging of middle ear cholesteatomas. Radiographics. 2012;32:1197–213.CrossRefGoogle Scholar
  16. 16.
    Dremmen MH, Hofman PA, Hof JR, et al. The diagnostic accuracy of non-echo-planar diffusion-weighted imaging in the detection of residual and/or recurrent cholesteatoma of the temporal bone. AJNR Am J Neuroradiol. 2012;33:439–44.CrossRefGoogle Scholar
  17. 17.
    Jindal M, Riskalla A, Jiang D, et al. A systematic review of diffusion-weighted magnetic resonance imaging in the assessment of postoperative cholesteatoma. Otol Neurotol. 2011;32:1243–9.CrossRefGoogle Scholar
  18. 18.
    Yamashita K, Yoshiura T, Hiwatashi A, et al. Detection of middle ear cholesteatoma by diffusion-weighted MR imaging: multishot echo-planar imaging compared with single-shot echo-planar imaging. AJNR Am J Neuroradiol. 2011;32:1915–8.CrossRefGoogle Scholar
  19. 19.
    Khemani S, Singh A, Lingam RK, et al. Imaging of postoperative middle ear cholesteatoma. Clin Radiol. 2011;66:760–7.CrossRefGoogle Scholar
  20. 20.
    Schwartz KM, Lane JI, Bolster BD Jr, et al. The utility of diffusion-weighted imaging for cholesteatoma evaluation. AJNR Am J Neuroradiol. 2011;32:430–6.CrossRefGoogle Scholar
  21. 21.
    Schwartz KM, Lane JI, Neff BA, et al. Diffusion-weighted imaging for cholesteatoma evaluation. Ear Nose Throat J. 2010;89:E14–9.PubMedGoogle Scholar
  22. 22.
    Baráth K, Huber AM, Stämpfli P, et al. Neuroradiology of cholesteatomas. AJNR Am J Neuroradiol. 2011;32:221–9.CrossRefGoogle Scholar
  23. 23.
    Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45:169–84.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Otolaryngology, Head and Neck Surgery, Faculty of MedicineYamagata UniversityYamagataJapan

Personalised recommendations