Skip to main content

Cyanobacteria: The Eco-friendly Tool for the Treatment of Industrial Wastewater

  • Chapter
  • First Online:
Environmental Contaminants: Ecological Implications and Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 14))

Abstract

Cyanobacteria have been regarded as green eco-friendly bioremediation tools in recent years because of their potential applications in wastewater treatment. Several strains of cyanobacteria were reported to accumulate and detoxify different types of organic and inorganic pollutants. Studies also confirm that cyanobacterial consortia are capable of degrading oil components. There are still many unknown cyanobacteria that have tremendous degradation capacity for organic compounds present in nature, and it is important to assess the potential of cyanobacteria isolates indigenous to sites contaminated with organic and inorganic pollutants. Cyanobacteria are one of the potential organisms useful to mankind in various ways. Cyanobacteria constitute a vast potential resource in varied applications such as combating pollution, agriculture, food, feed, fuel, fertilizer, medicine, and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Garcia-Pichel F (2001) Long-term compositional changes after transplant in a microbial mat cyanobacterial community composition revealed using a polyphasic approach. Environ Microbiol 3:53–62

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan SS (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil contaminated coasts of the Arabian Gulf. Mar Biol 130:521–527

    Article  CAS  Google Scholar 

  • Ali SK, Saleh AM (2012) Spirulina–an overview. Int J Pharm Pharm Sci 4(3):9–15

    CAS  Google Scholar 

  • Al-Turki AI (2009) Microbial polycyclic aromatic hydrocarbons degradation in soil. Res J Environ Toxicol 3:1–8

    Article  CAS  Google Scholar 

  • Amores-Sanchez I, Terron-Orellana MDC, Gonzalez-Becerra AE, Gonzalez-Diaz TDV (2015) Potential of microalgae and cyanobacteria in bio remediation of distillery waste water, vol 49, No 1. ICIDCA Sobre los Derivados de la Cana de Azucar

    Google Scholar 

  • Anjana K, Kaushik A, Kiran B, Nisha R (2007) Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J Hazard Mater 148:383–386

    Article  CAS  Google Scholar 

  • Ashraf R, Ali TA (2007) Effect of heavy metals on soil microbial community and mung beans seed germination. Pak J Bot 39(2):629–636

    Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Article  CAS  Google Scholar 

  • Bailey SE, Olin TJ, Bricka M, Adrian DDA (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Chakrabarti K, Chakraborty A, Tripathy S, Powell MA (2008) Fractionation and bioavailability of Pb in municipal solid waste compost and Pb uptake by rice straw and grain under submerged condition in amended soil. Geosci J 12(1):41–45

    Article  CAS  Google Scholar 

  • Blier R, Laliberte G, Noue JDL (1995) Tertiary treatment of cheese factory anaerobic effluent with Phormidiuim bohneri and Micractinium pusilllum. Bioresour Technol 52:151–155

    Article  CAS  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    Article  CAS  Google Scholar 

  • Borisev M, Pajevic S, Nikolic N, Pilipovic A, Krstic B, Orlovic S (2009) Phytoextraction of Cd, Ni and Pb using four willow clones (Salix spp.). Pol J Environ Stud 18(4):553–561

    CAS  Google Scholar 

  • Brar A, Kumar M, Vivekanand V, Pareek N (2017) Photoautotrophic microorganisms and bioremediation of industrial effluents current status and future prospects. 3 Biotech 7:18. https://doi.org/10.1007/s13205-017-0600-5

    Article  Google Scholar 

  • Burritt DJ (2008) The polycyclic aromatic hydrocarbon phenanthrene causes oxidative stress and alters polyamine metabolism in the aquatic liverwort Riccia fluitans L. Plant Cell Environ 31:1416–1431

    Article  CAS  Google Scholar 

  • Canizares RO, Rivas L, Montes C, Dorminguez AR (1991) Aerated swine waste water treatment with K-carrageenan-immobilized Spirulina maxima. Bioresour Technol 47:89–91

    Article  Google Scholar 

  • Cepoi L, Dontu N, Victor S, Salaru V (2016) Removal of organic pollutants from wastewater by cyanobacteria. In: Zinicovscaia I, Cepoi L (eds) Cyanobacteria for bioremediation of wastewaters. Springer, Cham, pp 27–43

    Chapter  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, Baalen VC (1979) Algal oxidation of aromatic hydrocarbons: formation of lnaphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun 88:50–58

    Article  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, Baalen VC (1980) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Chavan A, Mukherji S (2010) Effect of co-contaminant phenol on performance of a laboratory-scale RBC with algal-bacterial biofilm treating petroleum hydrocarbon-rich wastewater. J Chem Technol Biotechnol 85:851–859

    Article  CAS  Google Scholar 

  • Cheung PY, Kinkle BK (2001) Mycobacterium diversity and pyrene mineralization in petroleum contaminated soils. Appl Environ Microbiol 67(5):2222–2229

    Article  CAS  Google Scholar 

  • Davies JS, Westlake DWS (1979) Crude oil utilization by fungi. J Microbiol 25:146–156

    CAS  Google Scholar 

  • Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MN, Sampathkumar P (2017) Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valorization:1–8

    Google Scholar 

  • EI-Sheekh MM, Ghareib MM, EL-Souod GWA (2012) Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J Bioremed Biodegr 3:133. https://doi.org/10.4172/2155-6199.1000133

    Article  CAS  Google Scholar 

  • Ellis JT, Hengge NN, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 111:491–495

    Article  CAS  Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    CAS  Google Scholar 

  • Fioravante IA, Barbosa FAR, Augusti R, Magalhaes SM (2000) Removal of methyl parathion by cyanobacteria Microcystis novacekii under culture conditions. J Environ Monit 12(6):1302–1306

    Article  CAS  Google Scholar 

  • Fogg GE, Thake B (1987) Algal cultures and phytoplankton ecology, 3rd edn. The University Wisconsin Press Ltd, London

    Google Scholar 

  • Gahlout M, Prajapati H, Chauhan P, Savande L, Yadav P (2017) Isolation, screening and identification of cyanobacteria and its uses in bioremediation of industrial effluents and chromium sorption. Int J Adv Res Biol Sci 4(4):138–146

    Article  CAS  Google Scholar 

  • Gangolli SD, Van Den Brandt PA, Feron VJ, Janzzowsky C, Koeman JH, Speijers GJA, Speigelhalder B, Walker R, Wishnok JS (1994) Assessment: nitrate, nitrite and N-nitroso compounds. Eur J Pharmacol Environ Toxicol Pharmacol 292:1–38

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Pringault O (2001) Cyanobacteria track water in desert soils. Nature 413:380–381

    Article  CAS  Google Scholar 

  • Gattullo CE, Bahrs H, Steinberg CEW, Loffredo E (2012) Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506

    Article  CAS  Google Scholar 

  • Gaur N, Dhankhar R (2009) Removal of Zn+2 ions from aqueous solution using Anabaena variabilis: equilibrium and kinetic studies. Int J Environ Res 3(4):605–616

    CAS  Google Scholar 

  • Gavrilescu M (2010) Environmental biotechnology: achievements, opportunities and challenges. Dyn Biochem Process Biotechnol Mol Biol 4:1–36

    Google Scholar 

  • Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39:103–110

    Article  Google Scholar 

  • Guiliano M, Boukir A, Doumenq P, Mille G (2000) Supercritical fluid extraction of bal150 crude oil asphaltenes. Energy Fuel 14:89–94

    Article  CAS  Google Scholar 

  • Gupta VK, Nayak A, Agarwal S (2015) Bio adsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–18

    Article  Google Scholar 

  • Harding LW, Phillips JH (1978) Polychlorinated biphenyl (PCB) uptake by marine phytoplankton. Mar Biol 49:103–111

    Article  CAS  Google Scholar 

  • Hashimato S, Furukawa K (1989) Nutrient removal from secondary effluent by filamentous algae. J Ferment Bioeng 67:62–69

    Article  Google Scholar 

  • Hem D (1992) Study and interpretation of the chemical characteristics of natural water. US Geol Surv Water Supply Paper 2254:1992

    Google Scholar 

  • Hinojosa MB, Carreira JA, Ruız RG, Dick RP (2004) Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal contaminated and reclaimed soils. Soil Biol Biochem 36:1559–1568

    Article  CAS  Google Scholar 

  • Hoh D, Watson S, Kan E (2016) Algal biofilm reactors for integrated wastewater treatment and biofuel production: a review. Chem Eng J 287:466–473

    Article  CAS  Google Scholar 

  • Hong YW, Yuan DX, Lin QM, Yang TL (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56:1400–1405

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Hussein MH, Ali M, Abdullah AM, Eladal EG, El-Din NIB (2016) Phyco-remediation of some pesticides by microchlorophyte alga, Chlorella sp. J Fertil Pestic 7:2. https://doi.org/10.4172/2471-2728.1000173

    Article  Google Scholar 

  • IARC (1983) Polynuclear aromatic compounds, part 1, chemical, environmental and experimental data. IARC Monogr Eval Carcinog Risk Chem Hum 32:1–453

    Google Scholar 

  • Ibrahim, W.M., Mohamed, A.K., El-Shahat, R.M., Adway, A.A. 2014. Biodegradation and utilization of organophosphorus pesticide. In: 5th international conference on agriculture, environment and biological sciences (ICAEBS-16), April 28–29, 2016, Pattaya (Thailand)

    Google Scholar 

  • Inthorn D, Silapanuntakul S, Incharoensakdi A (2002) Filamentous cyanobacteria can efficiently remove cadmium present in aqueous solution at low concentration. Asian J Microbiol Biotechnol Environ Sci 4:1–6

    CAS  Google Scholar 

  • Jin ZP, Luo K, Zhang S, Zheng Q, Yang H (2012) Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87:278–284

    Article  CAS  Google Scholar 

  • Kapoor A, Viraghavan T (1997) Nitrate removal from drinking water: review. J Environ Eng 123(4):371–380

    Article  CAS  Google Scholar 

  • Karn SK (2016) Application of cyanobacteria for bioremediation of wastewaters. J Clean Prod 135:819–820

    Article  Google Scholar 

  • Karn SK, Chakrabarti SK (2015) Simultaneous bio-degradation of organic (chlorophenols) and inorganic compounds from secondary sludge of pulp and paper mill by Eisenia fetida. Int J Recycl Org Waste Agric 4(1):53–62. https://doi.org/10.1007/s40093-015-0085-3

    Article  Google Scholar 

  • Karn SK, Chakrabarti SK, Reddy MS (2011) Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation 22(1):63–69

    Article  CAS  Google Scholar 

  • Karna RR, Uma L, Subramanian G, Mohan PM (1999) Biosorption of toxic metal ions by alkali extracted biomass of a marine cyanobacterium Phormidium valderianum BDU 30501. World J Microbiol Biotechnol 15:729–732

    Article  CAS  Google Scholar 

  • Kasthuri J (2008) Interaction between Coirpigh effluent and the cyanobacterium Oscillatoria acuminate. Bharathidasan University, Tiruchirappalli

    Google Scholar 

  • Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240

    Article  Google Scholar 

  • Khraisheh MAM, Al-Degs YS, Meminn WAM (2005) Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem Eng J 99:177–184

    Article  CAS  Google Scholar 

  • Kiran B, Thanasekaran K (2012) An indigenous cyanobacterium, Lyngbya putealis, as biosorbent: optimization based on statistical model. Ecol Eng 42:232–236

    Article  Google Scholar 

  • Klekner V, Kosaric N (1992) Degradation of phenols by algae. Environ Technol 13:493–501

    Article  CAS  Google Scholar 

  • Kumar R, Vipparty V, David JJ, Chandramohan D (2001) Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol 57:433–436

    Article  Google Scholar 

  • Kumar MS, Praveenkumar R, Ilavarasi A, Rajeshwari K, Thajuddin N (2013) Biochemical changes of fresh water cyanobacteria Dolichospermum flos-aquae NTMS07 to chromium-induced stress with special reference to antioxidant enzymes and cellular fatty acids. Bull Environ Contam Toxicol 90(6):730–735. https://doi.org/10.1007/s00128-013-0984-9

    Article  CAS  Google Scholar 

  • Kuritz T (1998) Cyanobacteria as agents for the control of pollution by pesticides and chlorinated organic compounds. J Appl Microbiol 85(1):186–192. https://doi.org/10.1111/j.1365-2672.1998.tb05298.x

    Article  Google Scholar 

  • Lee CM, Lu C, Lu WM, Chen PC (1995) Removal of nitrogenous compounds from wastewaters using immobilized cyanobacteria Anabaena CH3. Environ Technol 16:701–713

    Article  CAS  Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322

    Article  CAS  Google Scholar 

  • Lipok J, Studnik H, Gruyaert S (2010) The toxicity of Roundups 360 SL formulation and its main constituents: glyphosate and isopropyl amine towards non-target water photoautotrophs. Ecotoxicol Environ Saf 73(1):1681–1688

    Article  CAS  Google Scholar 

  • Manoharan C, Subramanian G (1992a) Interaction between paper mill effluent and the cyanobacterium Oscillatoria pseudogeminata var. unigranulata. Pollut Res 11:73–84

    CAS  Google Scholar 

  • Manoharan C, Subramanian G (1992b) Sewage cyanobacterial interaction: a case study. IJEP 12:254–258

    Google Scholar 

  • Matsunaga T, Takeyama H, Sudo H, Oyama N, Ariura S, Takano H, Hirano M, Burgess JG (1991) Glutamate production from CO2 by marine cyanobacterium Synechococcus sp. using a noval bio solar employing light diffusing optical fibres. Appl Biochem Biotechnol 28(29):157–167

    Article  Google Scholar 

  • Matsunaga T, Sudo H, Takemasa H, Wach Y, Nakamura N (1996) Sulfated extracellular polysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia immobilized on light-diffusing optical fibers. Appl Microbiol Biotechnol 45(1):24–27

    Article  CAS  Google Scholar 

  • McCann AE, Cullimore DR (1979) Influence of pesticides on the soil algal flora. In: Gunther JD, Gunther FA (eds) Residue reviews. Springer, New York, pp 1–31

    Google Scholar 

  • Mitra-Kirtley S, Mullins CO, Elp JV, George JS, Chen J, Cramer PS (1993) Determination of the nitrogen chemical structures in petroleum as phaltenes using XANES spectroscopy. J Am Chem Soc 115:252–258

    Article  CAS  Google Scholar 

  • Mohammadi T, Moheb A, Sadrzadeh M, Razmi A (2005) Modeling of metal ion removal from wastewater by electrodialysis. Sep Purif Technol 41:73–82

    Article  CAS  Google Scholar 

  • Morales AR, Michel PJ (2014) Bioremediation of hexadecane and diesel oil is enhanced by photosynthetically produced marine biosurfactants. J Bioremed Biodegr:S4-005. https://doi.org/10.4172/2155-6199

  • Moreno J, Angeles VM, Olivares H, Rivas J, Guerrero MG (1998) Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J Biotechnol 60:175–182

    Article  CAS  Google Scholar 

  • Moro CV, Bricheux G, Portelli C, Bohatier J (2012) Comparative effects of the herbicides chlortoluron and mesotrione on freshwater microalgae. Environ Toxicol Chem 31:778–786

    Article  CAS  Google Scholar 

  • Mota R, Pereira SB, Meazzini M, Fernandes R, Santos A, Evans CA, Philippis DR, Wright PC, Tamagnini P (2016) Heavy metals and cyanobacteria: towards bioremediation. In: Atlas of science. MIT Press, Cambridge

    Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants. Water Res 40:2799–2815

    Article  CAS  Google Scholar 

  • Neos C, Varma MM (1966) The removal of phosphate by algae. Water Sew Work 112:456–459

    Google Scholar 

  • Noel SD, Rajan MR (2014) Cyanobacteria as a potential source of phyco-remediation from textile industry effluent. J Bioremed Biodegr 5:7. https://doi.org/10.4172/2155-6199.1000260

    Article  CAS  Google Scholar 

  • Noue JDL, Basseres A (1989) Bio treatment of anaerobically digested swine manure with microalgae. Biol Wastes 29:17–31

    Article  Google Scholar 

  • Noue JDL, Proulx D (1988) Biological tertiary treatment of urban waste water with chitosan- immobilized Phormidium. Appl Microbiol Biotechnol 29:292–297

    Article  Google Scholar 

  • Nubel U, Garcia-Pichel F, Kuhl M, Muyzer G (1999) Quantifying microbial diversity: morphotype, 16S rRNA genes, and carotenoids of oxygenic prototroph in microbial mats. Appl Environ Microbiol 65:422–430

    CAS  Google Scholar 

  • Palaniswamy R, Veluchamy C (2017) Biosorption of heavy metal by Spirulina platensis from electroplating industrial effluent. Indian J Environ Sci 13(4):139

    Google Scholar 

  • Parikh P, Rao K.S (2005) The response of Chara and Oscillatoria to remove Ni (II) ions from industrial waste water. J Ind Pollut Control 21(2):293–297

    Google Scholar 

  • Pereira S, Micheletti E, Zille A, Santos A, Moradas-Ferreira P, Tamagnini P, Philippis RD (2011) Using extracellular polymeric substances (EPS) producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell. Microbiology 157:451–458. https://doi.org/10.1099/mic.0.041038-0

    Article  CAS  Google Scholar 

  • Pineda-Flores, G., Boll-Arguello, G., Mesta-Howard, A.M. 2001. Microbial oxidation of asphaltenes extracted of crude oil. Proceedings of the first European bioremediation conference, Chania, pp 56–59

    Google Scholar 

  • Pouliot Y, Buelna G, Racinie C, Noue JDL (1989) Culture of cyanobacteria for tertiary wastewater treatment and biomass production. Biol Water 29:81–91

    CAS  Google Scholar 

  • Pradhan S, Rai LC (2000) Optimization of flow rate, initial metal ion concentration and biomass density for maximum removal of Cu2+ by immobilized Microcystis. World J Microbiol Biotechnol 16:579–584

    Article  CAS  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae–a review. J Algal Biomass Utilization 3:89–100

    Google Scholar 

  • Quijano G, Arcila JS, Buitron G (2017) Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnol Adv 35:772–781

    Article  CAS  Google Scholar 

  • Qureshi MA, Garlich JD, Kidd MT (1996) Dietary Spirulina platensis enhances humoral and cell-mediated immune functions in chickens. Immunopharmacol Immunotoxicol 18(3):465–476. https://doi.org/10.3109/08923979609052748

    Article  CAS  Google Scholar 

  • Rai LC, Mallick N (1992) Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World J Microbiol Biotechnol 8:110–114

    Article  CAS  Google Scholar 

  • Raungsomboon S, Chidthaisong A, Bunnag B, Inthorn D, Harvey NW (2008) Removal of lead (Pb2+) by the Cyanobacterium gloeocapsa sp. Bioresour Technol 99:5650–5658

    Article  CAS  Google Scholar 

  • Renuka N, Prasanna R, Sood A, Ahluwalia AS, Bansal R (2016) Exploring the efficacy of wastewater-grown microalgal biomass as a bio fertilizer for wheat. Environ Sci Pollut Res 23:6608–6620

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant RN (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Salman JM, Abdul-Adel E (2015) Potential use of cyanophyta species Oscillatoria limnetica in bioremediation of organophosphorus herbicide glyphosate. Mesopotamia Environ J 4:15–26

    Google Scholar 

  • Sekhar KC, Kamala CT, Chary NS, Sastry ARK (2004) Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. J Hazard Mater 108:111–117

    Article  CAS  Google Scholar 

  • Sergeev VI, Shimko TG, Kuleshova ML, Maximovich NG (1996) Ground water protection against pollution by heavy metals at waste disposal sites. Water Sci Technol 34:383–387

    Article  CAS  Google Scholar 

  • Sethunathan N, Megharaj M, Chen ZL, Williams BD, Lewis G, Naidu R (2004) Algal degradation of a known endocrine disrupting insecticide, alpha-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J Agric Food Chem 52:3030–3035

    Article  CAS  Google Scholar 

  • Shah V, Garg N, Madamwar D (1999) Exopolysaccharide production by a marine cyanobacterium Cyanothece sp. application in dye removal by its gelation phenomenon. Appl Biochem Biotechnol 82(2):81–90

    Article  CAS  Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J Ind Microbiol Biotechnol 19:130–133

    Article  CAS  Google Scholar 

  • Shun-hong H, Bing P, Zhi-hui Y, Li-yuan C, Li-cheng Z (2009) Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Trans Nonferrous Metals Soc China 19:241–248

    Article  CAS  Google Scholar 

  • Singh J, Kalamdhad A (2011) Effects of heavy metals on soil, plants, human health and aquatic. Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati

    Google Scholar 

  • Singh S, Pradhan S, Rai LC (2000) Metal removal from single and multimetallic systems by different biosorbent materials as evaluated by differential pulse anodic stripping voltammetry. Process Biochem 36:175–182

    Article  CAS  Google Scholar 

  • Singh S, Rai BN, Rai LC (2001) Ni (II) and Cr (VI) sorption kinetics in single and multimetallic system. Process Biochem 36:1205–1213

    Article  CAS  Google Scholar 

  • Sivakami R, Mahalakshmi M, Premkishore G (2015) Removal of heavy metals by biosorption using cyanobacteria isolated from freshwater pond. Int J Curr Microbiol App Sci 4(12):655–660

    CAS  Google Scholar 

  • Sorme L, Lagerkvist R (2002) Sources of heavy metals in urban wastewater in Stockholm. Sci Total Environ 298:131–145

    Article  CAS  Google Scholar 

  • Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 15(1):1–8. https://doi.org/10.1016/j.jhazmat.2007.09.101

    Article  CAS  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128. https://doi.org/10.1038/nbt0210-126

    Article  CAS  Google Scholar 

  • Stockholm Convention (2011) Persistent organic pollutants. Available from: http://chm.pops.int/Convention/ThePOPs/tabid/673/default.aspx

  • Sun J, Simsek H (2017) Bioavailability of wastewater derived dissolved organic nitrogen to green microalgae Selenastrum capricornutum, Chlamydomonas reinhardtii, and Chlorella vulgaris with/without presence of bacteria. J Environ Sci 57:346–355

    Article  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation: a novel and promising approach for environmental cleanup. Crit Rev Biotechnol 24:97–124

    Article  CAS  Google Scholar 

  • Tang X, LY H, Tao XQ, Dang Z, Guo CL, Lu GN, Yi XY (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181:1158–1162

    Article  CAS  Google Scholar 

  • Uma L, Subramanian G (1990) Effective use of cyanobacteria in effluent treatment. In: Proceedings of the National Symposium on Cyanobacterial N2 Fixation, IARI, New Delhi, pp 437–444

    Google Scholar 

  • Vijayakumar S (2005) Studies on Cyanobacteria in industrial effluents – an environmental and molecular approach. Bharathidasan University, Tiruchirapalli

    Google Scholar 

  • Vijayakumar S, Tajudden N, Manoharan C (2005) Role of Cyanobacteria in the treatment dye industry effluent. Pollut Res 24:69–74

    Google Scholar 

  • Ward DM, Santegoeds CM, Nold SC, Ramsing NB, Ferris MJ, Bateson MM (1997) Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures. Antonie Van Leeuwenhoek 71:143–150

    Article  CAS  Google Scholar 

  • Wuang SC, Khin MC, Chua PQ, Luo YD (2016) Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res 15:59–64

    Article  Google Scholar 

  • Yao H, Xu J, Huang C (2003) Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal polluted paddy soils. Geoderma 115:139–148

    Article  CAS  Google Scholar 

  • Ybarra GR, Webb R (1998) Differential responses of groel and metallothionein genes to divalent metal cations and the oxyanions of arsenic in the cyanobacterium Synechococcus sp. strain pcc7942. Proc Conf Hazard Waste Res 1:76–86

    Google Scholar 

  • Zhang S, Qiu CB, Zhou Y, Jin ZP, Yang H (2011) Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology 20:337–347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research (SBSPGI) Balawala, Dehradun (UK), India, for providing the facility, space, and resources for this review work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Karn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sen, S., Karn, S.K. (2019). Cyanobacteria: The Eco-friendly Tool for the Treatment of Industrial Wastewater. In: Bharagava, R. (eds) Environmental Contaminants: Ecological Implications and Management . Microorganisms for Sustainability, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-7904-8_8

Download citation

Publish with us

Policies and ethics