Skip to main content

Splendid Role of Nanoparticles as Antimicrobial Agents in Wastewater Treatment

  • Chapter
  • First Online:
Book cover Environmental Contaminants: Ecological Implications and Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 14))

  • 611 Accesses

Abstract

In modern era, the treatment of wastewater requires other advanced technologies for offering clean water supply. Treatment of wastewater is requisite, as the untreated wastewater is a common source of chemical pollutants and microbial pathogens and causes contamination of surrounding water and land sources. The science of ‘nanotechnology’ can present excellent potential in advancement of wastewater treatment methods for safer disposal or further utilization of treated wastewater. Development and synthesis of nanoparticles and other nanomaterials and determining their efficacy for removal of aquatic pollutants are burning areas of research in nanoscience world. The unique physiochemical properties of nanoparticles present wide-spectrum antimicrobial activities for eliminating risks of waterborne diseases. These particles inactivate microbial pathogens through showing broad arrays of mechanisms of antimicrobial actions. Nanoparticles also remove other inorganic and organic sources of contaminants from wastewater and exhibit their potential use in wastewater management. This chapter focuses on basic introduction of nanoparticles and their possible application as disinfectants in wastewater treatment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fatah MA (2018) Nanofiltration systems and applications in wastewater treatment: review article. Ain Shams Eng J 9(4):3077–3092

    Article  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    Article  CAS  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Article  CAS  Google Scholar 

  • Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11(20):3805–3821

    Article  CAS  Google Scholar 

  • Brady-Estévez AS, Schnoor MH, Kang S, Elimelech M (2010) SWNT−MWNT hybrid filter attains high viral removal and bacterial inactivation. Langmuir 26(24):19153–19158

    Article  CAS  Google Scholar 

  • Cai L, Zhang T (2013) Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environ Sci Technol 47(10):5433–5441

    Article  CAS  Google Scholar 

  • Chahal C, Van den Akker B, Young F, Franco C, Blackbeard J, Monis P (2016) Pathogen and particle associations in wastewater. Adv Appl Microbiol 97:63–119

    Article  CAS  Google Scholar 

  • Choi H, Al-Abed SR, Dionysiou DD, Stathatos E, Lianos P (2010) Chapter 8 TiO2-based advanced oxidation nanotechnologies for water purification and reuse. In: Escobar IC, Schäfer AI (eds) Sustainability science and engineering. Elsevier, Amsterdam, pp 229–254

    Google Scholar 

  • Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34(3):181–190

    Article  CAS  Google Scholar 

  • Department of Water Affairs (2011) Green drop handbook, version 1. Department of Water Affairs, Pretoria. 2011

    Google Scholar 

  • Dunlop P, Byrne J, Manga N, Eggins B (2002) The photocatalytic removal of bacterial pollutants from drinking water. J Photochem Photobiol A Chem 148(1–3):355–363

    Article  CAS  Google Scholar 

  • Ealia AM, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser: Mat Sci Eng 263:032019

    Article  Google Scholar 

  • Elechiguerra J, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman M (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • Holappa J, Hjálmarsdóttir M, Másson M, Rúnarsson Ö, Asplund T, Soininen P, Nevalainen T, Järvinen T (2006) Antimicrobial activity of chitosan N-betainates. Carbohydr Polym 65(1):114–118

    Article  CAS  Google Scholar 

  • Hossain F, Perales-Perez OJ, Hwang S, Román F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466–467:1047–1059

    Article  CAS  Google Scholar 

  • Huang L, Li D, Lin Y, Wei M, Evans DG, Duan X (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99(5):986–993

    Article  CAS  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    Article  CAS  Google Scholar 

  • Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24(6):583–596

    Article  CAS  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673

    Article  CAS  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2012) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29(2):191–207

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101

    Article  CAS  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report. Saudi Pharm J 24(4):473–484

    Article  Google Scholar 

  • Le-Clech P, Chen V, Fane TA (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284(1–2):17–53

    Article  CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933

    Article  CAS  Google Scholar 

  • Lee J, Mackeyev Y, Cho M, Li D, Kim J, Wilson LJ, Alvarez PJ (2009) Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Environ Sci Technol 43(17):6604–6610

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  Google Scholar 

  • Li D, Craik SA, Smith DW, Belosevic M (2009) The assessment of particle association and UV disinfection of wastewater using indigenous spore-forming bacteria. Water Res 43(2):481–489

    Article  CAS  Google Scholar 

  • Liu SB, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang RR, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980

    Article  CAS  Google Scholar 

  • Lugscheider E, Bärwulf S, Barimani C, Riester M, Hilgers H (1998) Magnetron-sputtered hard material coatings on thermoplastic polymers for clean room applications. Surf Coat Technol 108–109:398–402

    Article  Google Scholar 

  • Markowska-Szczupak A, Ulfig K, Morawski A (2011) The application of titanium dioxide for deactivation of bioparticulates: an overview. Catal Today 169(1):249–257

    Article  CAS  Google Scholar 

  • Mayo J, Yavuz C, Yean S, Cong L, Shiple H, Yu W, Falkner J, Kan A, Tomson M, Colvin V (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8(1–2):71–75

    Article  CAS  Google Scholar 

  • Mohammadi S, Harvey A, Boodhoo KV (2014) Synthesis of TiO2 nanoparticles in a spinning disc reactor. Chem Eng J 258:171–184

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  CAS  Google Scholar 

  • Naidoo S, Olaniran A (2013) Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health 11(1):249–270

    Article  CAS  Google Scholar 

  • Nutt MO, Hughes JB, Wong MS (2005) Designing Pd-on-au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ Sci Technol 39(5):1346–1353

    Article  CAS  Google Scholar 

  • Paillard D, Dubois V, Thiebaut R, Nathier F, Hoogland E, Caumette P, Quentin C (2005) Occurrence of Listeria spp. in effluents of French urban wastewater treatment plants. Appl Environ Microbiol 71(11):7562–7566

    Article  CAS  Google Scholar 

  • Peter-Varbanets M, Zurbrügg C, Swartz C, Pronk W (2009) Decentralized systems for potable water and the potential of membrane technology. Water Res 43(2):245–265

    Article  CAS  Google Scholar 

  • Pimpin A, Srituravanich W (2012) Review on micro- and nanolithography techniques and their applications. Eng J 16(1):37–56

    Article  Google Scholar 

  • Powell MC, Kanarek MS (2006) Nanomaterial health effects—part 1: background and current knowledge. Wis Med J 105(2):16–20

    Google Scholar 

  • Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Film 517(24):6441–6478

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  Google Scholar 

  • Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465

    Article  CAS  Google Scholar 

  • Rahaman MS, Vecitis CD, Elimelech M (2012) Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ Sci Technol 46(3):1556–1564

    Article  CAS  Google Scholar 

  • Ramakrishna S, Fujihara K, Teo W, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    Article  CAS  Google Scholar 

  • Ramesh S (2013) Sol-gel synthesis and characterization of nanoparticles. J Nanosci 2013:1–8

    Article  CAS  Google Scholar 

  • Rutala WA, Weber DJ, Healthcare Infection Control Practices Advisory Committee (2008) Guideline for disinfection and sterilization in healthcare facilities. Available from: https://www.cdcgov/ncidod/dhqp/pdf/guidelines/Disinfection_Nov_2008pdf

  • Salavati-Niasari M, Davar F, Mir N (2008) Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 27(17):3514–3518

    Article  CAS  Google Scholar 

  • Samanta HS, Das R, Bhattachajee C (2016) Influence of nanoparticles for wastewater treatment- a short review. Austin Chem Eng 3(3):1036

    Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Shah PP, Gavrin A (2006) Synthesis of nanoparticles using high-pressure sputtering for magnetic domain imaging. J Magn Magn Mater 301(1):118–123

    Article  CAS  Google Scholar 

  • Shenashen MA, El-Safty SA, Elshehy EA (2014) Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Part Part Syst Charact 31(3):293–316

    Article  CAS  Google Scholar 

  • Shon HK, Phuntsho S, Chaudhary DS, Vigneswaran S, Cho J (2013) Nanofiltration for water and wastewater treatment – a mini review. Drink Water Eng Sci Discuss 6(1):59–77

    Article  Google Scholar 

  • Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carrière M (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43(21):8423–8429

    Article  CAS  Google Scholar 

  • Singh N, Singh S, Gupta V, Yadav HK, Ahuja T, Tripathy SS, Rashmi (2013) A process for the selective removal of arsenic from contaminated water using acetate functionalized zinc oxide nanomaterials. Environ Prog Sustain Energy 32(4):1023–1029

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  CAS  Google Scholar 

  • Tai CY, Tai C, Chang M, Liu H (2007) Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Ind Eng Chem Res 46(17):5536–5541

    Article  CAS  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34(1):43–69

    Article  CAS  Google Scholar 

  • Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment. World Appl Sci J 3(3):417–433

    Google Scholar 

  • Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4(9):5471–5479

    Article  CAS  Google Scholar 

  • Waeger F, Delhaye T, Fuchs W (2010) The use of ceramic microfiltration and ultrafiltration membranes for particle removal from anaerobic digester effluents. Sep Purif Technol 73(2):271–278

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2012) Progress on drinking water and sanitation. World Health Organization, Geneva

    Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  • Yadav TP, Yadav RM, Singh DP (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2(3):22–48

    Article  CAS  Google Scholar 

  • Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application. Chem Rev 110(10):5989–6008

    Article  CAS  Google Scholar 

  • You Y, Han J, Chiu PC, Jin Y (2005) Removal and inactivation of waterborne viruses using Zerovalent Iron. Environ Sci Technol 39(23):9263–9269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Veer Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhayay, V.K., Khan, A., Singh, J., Singh, A.V. (2019). Splendid Role of Nanoparticles as Antimicrobial Agents in Wastewater Treatment. In: Bharagava, R. (eds) Environmental Contaminants: Ecological Implications and Management . Microorganisms for Sustainability, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-7904-8_6

Download citation

Publish with us

Policies and ethics