Skip to main content

Microbial Degradation of Polyaromatic Hydrocarbons

  • Chapter
  • First Online:
Environmental Contaminants: Ecological Implications and Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 14))

Abstract

Polycyclic aromatic hydrocarbons (PAHs) belong to the large group of compounds that are composed of multiple aromatic rings. These are found in natural and anthropogenic sources like coal and petrol and can be detected in various environmental compartments, which is a strong concern due to their toxic, cancerogenic, and genotoxic properties. It is crucial to develop methods that would decrease their concentration in water and soils. The most potent degradation of PAHs is usage of microorganisms to biotransform the compounds in situ. In this chapter, the characterization of PAHs is presented. Biodegradation may be performed by bacteria and fungi and also in anaerobic conditions. The factors influencing the biodegradation of PAH are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanese S, Fontaine B, Chen W, Lima A, Cannatelli C, Piccolo A, Wang SQM, De Vivo B (2015) Polycyclic aromatic hydrocarbons in the soils of a densely populated region and associated human health risks: the campania plain (Southern Italy) case study. Environ Geochem Health 37(1):1–20

    Article  CAS  Google Scholar 

  • Arulazhagan P, Vasudevan N (2011) Role of nutrients in the utilization of polycyclic aromatic hydrocarbons by halotolerant bacterial strain. J Environ Sci (China) 23(2):282–287

    Article  CAS  Google Scholar 

  • Arun A, Raja PP, Arthi R, Ananthi M, Kumar KS, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl Biochem Biotechnol 151(2–3):132–142

    Article  CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736

    Article  CAS  Google Scholar 

  • Benhabib K, Faure P, Sardin M, Simonnot MO (2010) Characteristics of a solid coal tar sampled from a contaminated soil and of the organics transferred into water. Fuel 89(2):352–359

    Article  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus pleurotus ostreatus. Appl Environ Microbiol 63(7):2495–2501

    CAS  Google Scholar 

  • Bharagava RN, Chandra R (2010) Biodegradation of the major color containing compounds in distillery wastewater by an aerobic bacterial culture and characterization of their metabolites. Biodegrad J 21:703–711

    Article  CAS  Google Scholar 

  • Bharagava RN, Chandra R, Rai V (2009) Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery wastewater. World J Microbiol Biotechnol 25:737–744

    Article  CAS  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation: an eco-sustainable green technology, it’s applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group, Milton. ISBN:9781138628892

    Google Scholar 

  • Blumer M (1976) Polycyclic aromatic compounds in nature. Sci Am 234(3):35–45

    Article  CAS  Google Scholar 

  • Bonten L, Tim TC, Grotenbuis C, Rulkens WH (1999) Enhancement of PAH biodegradation in soil by physicochemical pretreatment. Chemosphere 38(15):3627–3636

    Article  CAS  Google Scholar 

  • Bonugli SRC, Dos Santos Vasconcelos MR, Passarini MR, Vieira GA, Lopes VC, Mainardi PH, Dos Santos JA, de Azevedo Duarte L, Otero IV, da Silva Yoshida AM, Feitosa VA, Pessoa JA, Sette LD (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:269

    Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31(1):248–252

    Article  CAS  Google Scholar 

  • Cajthaml T, Pacakova V, Sasek V (1997) Microbial degradation of polycyclic aromatic hydrocarbons. Feedback 91

    Google Scholar 

  • Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Javier F, Juárez J, Valderrama A, Barragán MJL, García JL, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73(1):71–133

    Article  CAS  Google Scholar 

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. In: Laskin AI (ed) Advances in applied microbiology. Academic Press, p 31–71

    Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19(5–6):324–333

    Article  CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2001) Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In: British mycological society symposium series. p 136–187

    Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110

    Chapter  Google Scholar 

  • Cerniglia CE, Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol 47(1):119–124

    CAS  Google Scholar 

  • Chai Y, Kochetkov A, Reible DD (2006) Modeling biphasic sorption and desorption of hydrophobic organic contaminants in sediments. Environ Toxicol Chem 25(12):3133–3140

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Rai V (2008) Melanoidins as major colorant in sugarcane molasses based distillery effluent and its degradation. Bioresour Technol 99:4648–4660

    Article  CAS  Google Scholar 

  • Chibwe LC, Davie-Martin L, Michael D, Hoh AE, Staci L, Simonich M (2017) Identification of polar transformation products and high molecular weight polycyclic aromatic hydrocarbons (PAHs) in contaminated soil following bioremediation. Sci Total Environ 599-600:1099–1107

    Article  CAS  Google Scholar 

  • Chowdhary P, Raj A, Bharagava RN (2018) Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: a review. Chemosphere 194:229–246

    Article  CAS  Google Scholar 

  • Cybulski Z, Dziurla E, Kaczorek E, Olszanowski A (2003) The influence of emulsifiers on hydrocarbon biodegradation by pseudomonadacea and bacillacea strains. Spill Sci Technol Bull 8(5):503–507

    Article  CAS  Google Scholar 

  • DiDonato RN, Young JD, Butler JE, Chin K-J, Hixson KK, Mouser P, Lipton MS, DeBoy R, Methé BA (2010) Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene. PLoS One 5(11):14072

    Article  CAS  Google Scholar 

  • Farrell J, Reinhard M (1994) Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions. 2. Kinetics. Environ Sci Technol 28(1):63–72

    Article  CAS  Google Scholar 

  • Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15(2–3):93–120

    Article  CAS  Google Scholar 

  • Freeman DJ, Cattell FCR (1990) Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol 24(10):1581–1585

    Article  CAS  Google Scholar 

  • Ghosal D, Chakraborty J, Khara P, Dutta TK (2010) Degradation of phenanthrene via meta-cleavage of 2-hydroxy-1-naphthoic acid by Ochrobactrum sp. strain PWTJD. FEMS Microbiol Lett 313(2):103–110

    Article  CAS  Google Scholar 

  • Ghosal D, Dutta A, Chakraborty J, Basu S, Dutta TK (2013) Characterization of the metabolic pathway involved in assimilation of acenaphthene in Acinetobacter sp. strain AGAT-W. Res Microbiol 164(2):155–163

    Article  CAS  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    Google Scholar 

  • Hadibarata T, Kristanti RA (2014) Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorene. Fungal Biol 118(2):222–227

    Article  CAS  Google Scholar 

  • Hadibarata T, Tachibana S, Itoh K (2009) Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J Hazard Mater 164(2–3):911–917

    Article  CAS  Google Scholar 

  • Hamamura N, Ward DM, Inskeep WP (2013) Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments. FEMS Microbiol Ecol 85(1):168–178

    Article  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15

    Article  CAS  Google Scholar 

  • Huntley SL, Bonnevie NL, Wenning RJ, Bedbury H (1993) Distribution of polycyclic aromatic hydrocarbons (PAHs) in three northern New Jersey waterways. Bull Environ Contam Toxicol 51(6):865–872

    Article  CAS  Google Scholar 

  • Hurst CJ, Sims RC, Sims JL, Sorensen DL, McLean JE, Huling S (1996) Polycyclic aromatic hydrocarbon biodegradation as a function of oxygen tension in contaminated soil. J Hazard Mater 51(1):193–208

    Article  CAS  Google Scholar 

  • Jove P, Olivella MA, Camarero S, Caixach J, Planas C, Cano L, De Las Heras FX (2016) Fungal biodegradation of anthracene-polluted cork: a comparative study. J Environ Sci Health A Tox Hazard Subst Environ Eng 51(1):70–77

    Article  CAS  Google Scholar 

  • Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci (China) 51:52–74

    Article  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067

    Article  CAS  Google Scholar 

  • Kim KH, Ara Jahan S, Kabir E, Brown RJC (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80

    Article  CAS  Google Scholar 

  • Langenhoff AA, Alexander M, Zehnder JB, Schraa G (1996) Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biodegradation 7(3):267–274

    Article  CAS  Google Scholar 

  • Lee K, Park JW, Ahn IS (2003) Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7. J Hazard Mater 105(1):157–167

    Article  CAS  Google Scholar 

  • Li P, Li H, Stagnitti F, Wang X, Zhang H, Gong Z, Liu W, Xiong X, Li L, Austin C, Barry DA (2005) Biodegradation of pyrene and phenanthrene in soil using immobilized fungi Fusarium sp. Bull Environ Contam Toxicol 75(3):443–450

    Article  CAS  Google Scholar 

  • Li CH, Ye C, Wong YS, Tam NF (2011) Effect of Mn(IV) on the biodegradation of polycyclic aromatic hydrocarbons under low-oxygen condition in mangrove sediment slurry. J Hazard Mater 190(1–3):786–793

    Article  CAS  Google Scholar 

  • Liu L, Endo S, Eberhardt C, Grathwohl P, Schmidt TC (2009) Partition behavior of polycyclic aromatic hydrocarbons between aged coal tar and water. Environ Toxicol Chem 28(8):1578–1584

    Article  CAS  Google Scholar 

  • Liu H, Meng F, Tong Y, Chi J (2014) Effect of plant density on phytoremediation of polycyclic aromatic hydrocarbons contaminated sediments with Vallisneria spiralis. Ecol Eng 73:380–385

    Article  Google Scholar 

  • Lüers F, Hulscher TEM (1996) Temperature effect on the partitioning of polycyclic aromatic hydrocarbons between natural organic carbon and water. Chemosphere 33(4):643–657

    Article  Google Scholar 

  • Mallick S, Chatterjee S, Dutta TK (2007) A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology 153(7):2104–2115

    Article  CAS  Google Scholar 

  • Mallick S, Chakraborty J, Dutta TK (2011) Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol 37(1):64–90

    Article  CAS  Google Scholar 

  • Marco UE, Garcia RI, Aranda E (2015) Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32(6):620–628

    Article  CAS  Google Scholar 

  • Masih A, Taneja A (2006) Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere 65(3):449–456

    Article  CAS  Google Scholar 

  • Masih J, Masih A, Kulshrestha A, Singhvi R, Taneja A (2010) Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the North central part of India. J Hazard Mater 177(1–3):190–198

    Article  CAS  Google Scholar 

  • Masih J, Singhvi R, Kumar K, Jain VK, Taneja A (2012) Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi arid tract of Northern India. Aerosol Air Qual Res 12:515–525

    Article  CAS  Google Scholar 

  • Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66(7):2743–2747

    Article  CAS  Google Scholar 

  • Meckenstock RU, Safinowski M, Griebler C (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49(1):27–36

    Article  CAS  Google Scholar 

  • Mihelcic JR, Luthy RG (1988) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl Environ Microbiol 54(5):1182–1187

    CAS  Google Scholar 

  • Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67(4):1476–1483

    Article  CAS  Google Scholar 

  • Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70(1):340–345

    Article  CAS  Google Scholar 

  • Mulla SI, Ameen F, Tallur PN, Bharagava RN, Bangeppagari M, Eqani S, Bagewadi ZK, Mahadevan GD, Yu CP, Ninnekar HZ (2017) Aerobic degradation of fenvalerate by a gram-positive bacterium Bacillus flexus strain XJU-4. 3 Biotech 7:320–328

    Article  Google Scholar 

  • Müller R, Antranikian G, Maloney S, Sharp R (1998) Thermophilic degradation of environmental pollutants. In: Antranikian G (ed) Biotechnology of extremophiles. Springer, Berlin, pp 155–169

    Chapter  Google Scholar 

  • Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11(1):209–219

    Article  CAS  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32(6):927–955

    Article  CAS  Google Scholar 

  • Pothuluri JV, Heflich RH, Fu PP, Cerniglia CE (1992) Fungal metabolism and detoxification of fluoranthene. Appl Environ Microbiol 58(3):937–941

    CAS  Google Scholar 

  • Pysh ES, Yang NC (1963) Polarographic oxidation potentials of aromatic compounds. J Am Chem Soc 85(14):2124–2130

    Article  CAS  Google Scholar 

  • Rein A, Adam IKU, Anja M, Brumme K, Kästner M, Trapp S (2016) Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and pyrene) – model simulations for prediction of bioremediation success. J Hazard Mater 306:105–114

    Article  CAS  Google Scholar 

  • Reyes-Cesar A, Absalon AE, Fernandez FJ, Gonzalez JM, Cortes-Espinosa DV (2014) Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil. World J Microbiol Biotechnol 30(3):999–1009

    Article  CAS  Google Scholar 

  • Rockne KJ, Strand SE (2001) Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Res 35(1):291–299

    Article  CAS  Google Scholar 

  • Rockne KJ, David HR, Stensel HP, Strand SE (1998) PAH degradation and bioaugmentation by a marine methanotrophic enrichment. Biorem J 1(3):209–222

    Article  CAS  Google Scholar 

  • Rockne KJ, Chee-Sanford JC, Sanford RA, Hedlund BP, Staley JT, Strand SE (2000) Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol 66(4):1595–1601

    Article  CAS  Google Scholar 

  • Rodríguez SJ, Bishop PL (2005) Competitive metabolism of polycyclic aromatic hydrocarbon (PAH) mixtures in porous media biofilms. Water Sci Technol 52(7):27–34

    Article  Google Scholar 

  • Romero MC, Cazau MC, Giorgieri S, Arambarri AM (1998) Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ Pollut 101(3):355–359

    Article  CAS  Google Scholar 

  • Sack U, Gunther T (1993) Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J Basic Microbiol 33(4):269–277

    Article  CAS  Google Scholar 

  • Safinowski M, Meckenstock RU (2006) Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ Microbiol 8(2):347–352

    Article  CAS  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group, Milton. ISBN:9781138628892

    Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2017) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69

    CAS  Google Scholar 

  • Simonsick WJ, Hites RA (1986) Characterization of high molecular weight polycyclic aromatic hydrocarbons by charge exchange chemical ionization mass spectrometry. Anal Chem 58(11):2114–2121

    Article  CAS  Google Scholar 

  • Singh P, Parmar D, Pandya A (2015) Parametric optimization of media for the crude oil degrading bacteria isolated from crude oil contaminated site. Int J Curr Microbiol App Sci 4:322–328

    CAS  Google Scholar 

  • Stringfellow WT, Aitken MD (1995) Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Appl Environ Microbiol 61(1):357–362

    CAS  Google Scholar 

  • Sun K, Liu J, Gao Y, Jin L, Gu Y, Wang W (2014) Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci Rep 4:54–62

    Google Scholar 

  • Sutherland JB, Rafii F, Khan AA, And Cerniglia CE (1995) Mechanisms of polycyclic aromatic hydrocarbon degradation. In: Microbial transformation and degradation of toxic organic chemicals, vol 15. p 269

    Google Scholar 

  • Vyas BR, Bakowski M, Šašek SV, Matucha M (1994) Degradation of anthracene by selected white rot fungi. FEMS Microbiol Ecol 14(1):65–70

    Article  CAS  Google Scholar 

  • Wang C, Yu L, Zhang Z, Wang B, Sun H (2014) Tourmaline combined with Phanerochaete chrysosporium to remediate agricultural soil contaminated with PAHs and OCPs. J Hazard Mater 264:439–448

    Article  CAS  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12(3):259–276

    Article  CAS  Google Scholar 

  • Wunch KG, Alworth WL, Bennett JW (1999) Mineralization of benzo[a]pyrene by Marasmiellus troyanus, a mushroom isolated from a toxic waste site. Microbiol Res 154(1):75–79

    Article  CAS  Google Scholar 

  • Young D, Rice J, Martin R, Lindquist E, Lipzen A, Grigoriev I, Hibbett D (2015) Degradation of bunker C fuel oil by white-rot fungi in sawdust cultures suggests potential applications in bioremediation. PLoS One 10(6):0130381

    Google Scholar 

  • Zhao L, Hou H, Shangguan Y, Cheng B, Xu Y, Zhao R, Zhang Y, Hua X, Huo X, Zhao X (2014) Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China. Ecotoxicol Environ Saf 108:120–128

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (Discovery Grant 355,254, CRD Grant and Strategic Grant 447,075) and Techno-Rem Inc. for financial support. The views or opinions expressed in this article are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kadri, T., Cuprys, A., Rouissi, T., Brar, S.K. (2019). Microbial Degradation of Polyaromatic Hydrocarbons. In: Bharagava, R. (eds) Environmental Contaminants: Ecological Implications and Management . Microorganisms for Sustainability, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-7904-8_5

Download citation

Publish with us

Policies and ethics