Circadian Rhythm and the Physiology and Pathology of Eye

  • Huaizhou Wang
  • Ningli WangEmail author
  • Hui Juan Wu
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 3)


With the proposing and popularizing of the concept of “ holistic integrative medicine,” people have moved their perspective from an isolated organ to the entire human body, and from the view of whole body further explore the relationship between human body and local organs at the level of internal body and analyze the interaction between the environment and the body at the level of external body, with the purpose of finding out the inner and close relationship from some of the past seemingly irrelevant things. “Circadian rhythm” is somehow strange for most ophthalmologists and far away from our usual study. But actually, “circadian rhythm” is the strongest rhythm system inside organisms, which can adjust the physiological rhythm and behavior according to the cycle of sun exposure. Light change is an important stimulus signal to the regulation of rhythm of the central. Eyes, which receive the light of outside world, without doubt, will have a complex relationship with circadian rhythm. In this section, we describe the basic concepts of biological rhythms, discuss the material basis and regulatory mechanisms of circadian rhythms with the most relevant to vision, and also introduce the interaction effect between circadian rhythm and physiology and pathology of the eye. It is expected that readers can understand the link between biological rhythm and ophthalmology after reading this chapter, and then deeply integrate the knowledge system related to biological rhythm and eye diseases by applying the concept of holistic integrative medicine, to better optimize the diagnosis and treatment of eye diseases.


  1. 1.
    Halberg F. Chronobiology:a science in tune with the rhythms of life. Minneapolis, MN: Bolger; 1986. p. 9–10.Google Scholar
  2. 2.
    Breaus T, Cornelissen G, Halberg F, et al. Temporal associations of life with solar and geophysical activity. Ann Geophys. 1995;13:1211–22.CrossRefGoogle Scholar
  3. 3.
    Smolensky MH. Introduction to chronobiology. New York: Springer; 1983. p. 1–12.Google Scholar
  4. 4.
    Wang Z. Chronobiology. Beijing: Beijing Science; 2006.Google Scholar
  5. 5.
    Lucas RJ, Douglas RH, Foster RG. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci. 2001;4(6):621–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A. 1998;95:340–5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20:600–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065–70.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. J Neurosci. 2003;23:7093–106.CrossRefPubMedGoogle Scholar
  10. 10.
    Morin LP, Blanchard JH, Provencio I. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol. 2003;465(3):401–16.CrossRefPubMedGoogle Scholar
  11. 11.
    Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 2003;299:245–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:505–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Hattar S, Lucas RJ, Mrosovsky N, et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003;424:76–81.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Panda S, Provencio I, Tu DC, et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science. 2003;301:525–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE. Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol. 2003;460:380–93.CrossRefPubMedGoogle Scholar
  16. 16.
    Perez-Leon JA, Warren EJ, Allen CN, Robinson DW, Brown RL. Synaptic inputs to retinal ganglion cells that set the circadian clock. EurJ Neurosci. 2006;24:1117–23.CrossRefGoogle Scholar
  17. 17.
    Hatori M, Le H, Vollmers C, et al. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One. 2008;3:e2451.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dacey DM, Liao HW, Peterson BB, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005;433:749–54.CrossRefPubMedGoogle Scholar
  19. 19.
    Waller EA, Bendel RE, Kaplan J. Sleep disorder and the eye. Mayo Clin Proc. 2008;83(11):1251–61.CrossRefPubMedGoogle Scholar
  20. 20.
    Lockley SW, Skene DJ, Arendt J, et al. Relationship between melatonin rhythms and visual loss in the blind. J Clin Endocrinol Metab. 1997;82(11):3763–70.PubMedGoogle Scholar
  21. 21.
    Gordo MA, Recio J, Sanchez-Barcelo EJ. Decreased sleep quality in patients suffering from retinitis pigmentosa. J Sleep Res. 2001;10(2):159–64.CrossRefPubMedGoogle Scholar
  22. 22.
    Jean-Louis G, Zizi F, Lazzaro DR, et al. Circadian rhythm dysfunction in glaucoma: a hypothesis. J Circ Rhythm. 2008;6:1.CrossRefGoogle Scholar
  23. 23.
    McNab AA. The eye and sleep apnea. Sleep Med Rev. 2007;11(4):269–76.CrossRefPubMedGoogle Scholar
  24. 24.
    Sergi M, Salerno DE, Rizzi M, et al. Prevalence of normal tension glaucoma in obstructive sleep apnea syndrome patients. J Glaucoma. 2007;16:42–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang J, Lin Z. Investigation of sleep disturbance in patients with primary glaucoma. Chin J Misdiagnostics. 2007;7:2168–9.Google Scholar
  26. 26.
    Wang HZ, Lu QJ, Wang NL, et al. Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model. Chin Med J. 2008;121(11):1015–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang H, Hong J, Wang N. Effect of acute ocular hypertension on retinal ganglion cells containing melanopsin in rats. Chin Ophthalmic Res. 2009;27(7):558–62.Google Scholar
  28. 28.
    Drouyer E, Dkhissi-Benyahya O, Chiquet C, et al. Glaucoma alters the circadian timing system. PLoS One. 2008;3(12):e3931.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li RS. Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci. 2006;47(7):2951–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang H, Zhang Y, Ding J, et al. Changes in the circadian rhythm in patients with primary glaucoma. PLoS One. 2013;8(4):e62841.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and People's Medical Publishing House, PR of China 2020

Authors and Affiliations

  1. 1.Beijing Tongren Eye CenterBeijingChina
  2. 2.Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  3. 3.Beijing Ophthalmology and Visual Sciences Key LaboratoryBeijingChina
  4. 4.Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HosptialCapital Medical UniversityBeijingChina
  5. 5.Department of OphthalmologyPeking University People’s HospitalBeijingChina

Personalised recommendations