Skip to main content

Glaucomatous Injury of Central Nerve System: The Role of Neuroimaging Technology in the Understanding of Disease

  • Chapter
  • First Online:
Integrative Ophthalmology

Part of the book series: Advances in Visual Science and Eye Diseases ((AVSED,volume 3))

  • 501 Accesses

Abstract

Understanding glaucoma is an endless process of continuous integration; for example glaucoma, which was firstly recognized to be a disease limited to the eye, has now been considered as a disease affecting the whole visual pathway with the characteristics of optic nerve injury in addition to corresponding visual field defects. Relevant contents have been elaborated in Chap. 6. In the process of overall integration, medical imaging technology plays an important role. There are varied approaches to study the characteristics and mechanisms of human diseases, especially with the booming progress of life science and modern molecular biology, so that the research can be carried out at the cellular level and molecular level. However, molecular biology has its insurmountable weakness—the limitation of the research object, as researchers can only inspect with clues from all kinds of animal models, autopsy of dead patients, and a small amount of local tissue from patients, and then infer to the human body. Only by morphological and functional observation in vivo could we understand the disease most authentically and effectively, which was barely possible for molecular biological method to achieve, while fortunately the imaging technology provides a means to realize the above purpose. This section discusses the role of neuroimaging techniques in understanding the process of damage to CNS by glaucoma, and it is hopefully that through reading this chapter, the readers would be able to understand advanced neuroimaging techniques used in ophthalmology nowadays; thus they would integrate the research methods of both molecular biology and imaging, the local part as the eye and the whole entire body, to provide new ideas and methods for further understanding glaucoma and other ophthalmic and nervous system diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Resnikoff S, Pascolini D, Etya’ale D, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82:844–51.

    PubMed  PubMed Central  Google Scholar 

  2. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.

    Article  PubMed  Google Scholar 

  3. Nicolela MT. Clinical clues of vascular dysregulation and its association with glaucoma. Can J Ophthalmol. 2008;43:337–41.

    Article  PubMed  Google Scholar 

  4. Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol. 2007;52(Suppl. 2):S144–54.

    Article  PubMed  Google Scholar 

  5. Emre M, Orgul S, Gugleta K, Flammer J. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol. 2004;88:662–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tezel G, Wax MB. The immune system and glaucoma. Curr Opin Ophthalmol. 2004;15:80–4.

    Article  PubMed  Google Scholar 

  7. Schwartz M, London A. Erratum to: immune maintenance in glaucoma: boosting the body’s own neuroprotective potential. J Ocul Biol Dis Infor. 2009;2:104–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schori H, Kipnis J, Yoles E, et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci U S A. 2001;98:3398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yucel Y, Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res. 2008;173:465–78.

    Article  PubMed  Google Scholar 

  10. Yucel YH, Gupta N, Zhang Q, et al. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol. 2006;124:217–25.

    Article  CAS  PubMed  Google Scholar 

  11. Yucel YH, Zhang Q, Gupta N, et al. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol. 2000;118:378–84.

    Article  CAS  PubMed  Google Scholar 

  12. Yucel YH, Zhang Q, Weinreb RN, et al. Atrophy of relay neurons in magno-and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci. 2001;42:3216–22.

    CAS  PubMed  Google Scholar 

  13. Yucel YH, Zhang Q, Weinreb RN, et al. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22:465–81.

    Article  PubMed  Google Scholar 

  14. Gang S, Jinghua W, Jing X, et al. Impairment on neurons of lateral geniculate nucleus in rats with chronic ocular hypertension. Recent Adv Ophthalmol. 2005;6:522–4.

    Google Scholar 

  15. Sasaoka M, Nakamura K, Shimazawa M, et al. Changes in visual fields and lateral geniculate nucleus in monkey laser-induced high intraocular pressure model. Exp Eye Res. 2008;86:770–82.

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Sam-Wah TS, Ng YK. Nitric oxide, microglial activities and neuronal cell death in the lateral geniculate nucleus of glaucomatous rats. Brain Res. 2000;878:136–47.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang S, Wang H, Lu Q, et al. Detection of early neuron degeneration and accompanying glial responses in the visual pathway in a rat model of acute intraocular hypertension. Brain Res. 2009;1303:131–43.

    Article  CAS  PubMed  Google Scholar 

  18. Crawford ML, Harwerth RS, Smith EL 3rd, et al. Experimental glaucoma in primates: changes in cytochrome oxidase blobs in V1 cortex. Invest Ophthalmol Vis Sci. 2001;42:358–64.

    CAS  PubMed  Google Scholar 

  19. Crawford ML, Harwerth RS, Smith EL 3rd, et al. Glaucoma in primates: cytochrome oxidase reactivity in parvo-and magnocellular pathways. Invest Ophthalmol Vis Sci. 2000;41:1791–802.

    CAS  PubMed  Google Scholar 

  20. Vickers JC, Hof PR, Schumer RA, et al. Magnocellular and parvocellular visual pathways are both affected in a macaque monkey model of glaucoma. Aust N Z J Ophthalmol. 1997;25:239–43.

    Article  CAS  PubMed  Google Scholar 

  21. Chan KC, So KF, Wu EX. Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma. Exp Eye Res. 2009;88:65–70.

    Article  CAS  PubMed  Google Scholar 

  22. Lam DY, Kaufman PL, Gabelt BT, To EC, Matsubara JA. Neurochemical correlates of cortical plasticity after unilateral elevated intraocular pressure in a primate model of glaucoma. Invest Ophthalmol Vis Sci. 2003;44:2573–81.

    Article  PubMed  Google Scholar 

  23. Gupta N, Ang LC, Noel de Tilly L, et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90:674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nucci C, Martucci A, Cesareo M, et al. Brain involvement in glaucoma: advanced neuroimaging for understanding and monitoring a new target for therapy. Curr Opin Pharmacol. 2013;13:128–33.

    Article  CAS  PubMed  Google Scholar 

  25. Dai H, Mu KT, Qi JP, et al. Assessment of lateral geniculate nucleus atrophy with 3T MR imaging and correlation with clinical stage of glaucoma. AJNR Am J Neuroradiol. 2011;32:1347–53.

    Article  CAS  PubMed  Google Scholar 

  26. Hernowo AT, Boucard CC, Jansonius NM, et al. Automated morphometry of the visual pathway in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2011;52:2758–66.

    Article  PubMed  Google Scholar 

  27. Boucard CC, Hernowo AT, Maguire RP, et al. Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain. 2009;132:1898–906.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen WW, Wang N, Cai S, et al. Structural brain abnormalities in patients with primary open-angle glaucoma: a study with 3T MR imaging. Invest Ophthalmol Vis Sci. 2013;54:545–54.

    Article  PubMed  Google Scholar 

  29. Li C, Cai P, Shi L, et al. Voxel-based morphometry of the visual-related cortex in primary open angle glaucoma. Curr Eye Res. 2012;37:794–802.

    Article  PubMed  Google Scholar 

  30. Garaci FG, Bolacchi F, Cerulli A, et al. Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3-T diffusion-tensor MR imaging. Radiology. 2009;252:496–501.

    Article  PubMed  Google Scholar 

  31. Chen Z, Lin F, Wang J, et al. Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma. Clin Exp Ophthalmol. 2013;41:43–9.

    Article  PubMed  Google Scholar 

  32. El-Rafei A, Engelhorn T, Wärntges S, et al. Glaucoma classification based on visual pathway analysis using diffusion tensor imaging. Magn Reson Imaging. 2013;31(7):1081–91.

    Article  PubMed  Google Scholar 

  33. Chang ST, Xu J, Trinkaus K, et al. Optic nerve diffusion tensor imaging parameters and their correlation with optic disc topography and disease severity in adult glaucoma patients and controls. J Glaucoma. 2013;23(8):513–20.

    Article  Google Scholar 

  34. Murai H, Suzuki Y, Kiyosawa M, et al. Positive correlation between the degree of visual field defect and optic radiation damage in glaucoma patients. Jpn J Ophthalmol. 2013;57:257–62.

    Article  PubMed  Google Scholar 

  35. Dai H, Yin D, Hu C, et al. Whole-brain voxel-based analysis of diffusion tensor MRI parameters in patients with primary open angle glaucoma and correlation with clinical glaucoma stage. Neuroradiology. 2013;55:233–43.

    Article  PubMed  Google Scholar 

  36. Boucard CC, Mostert JP, Cornelissen FW, et al. Visual stimulation, 1H MR spectroscopy and fMRI of the human visual pathways. Eur Radiol. 2005;15:47–52.

    Article  PubMed  Google Scholar 

  37. Block W, Traber F, Flacke S, et al. In-vivo proton MR-spectroscopy of the human brain: assessment of N-acetylaspartate (NAA) reduction as a marker for neurodegeneration. Amino Acids. 2002;23:317–23.

    Article  CAS  PubMed  Google Scholar 

  38. Gomez-Anson B, Alegret M, Munoz E, et al. Decreased frontal choline and neuropsychological performance in preclinical Huntington disease. Neurology. 2007;68:906–10.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Chen X, Wen G, et al. Proton magnetic resonance spectroscopy ((1) H-MRS) reveals geniculocalcarine and striate area degeneration in primary glaucoma. PLoS One. 2013;8(8):e73197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boucard CC, Hoogduin JM, van der Grond J, Cornelissen FW. Occipital proton magnetic resonance spectroscopy (1H-MRS) reveals normal metabolite concentrations in retinal visual field defects. PLoS One. 2007;2:222.

    Article  Google Scholar 

  41. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:9868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duncan RO, Sample PA, Weinreb RN, et al. Retinotopic organization of primary visual cortex in glaucoma: comparing fMRI measurements of cortical function with visual field loss. Prog Retin Eye Res. 2007;26:38–56.

    Article  PubMed  Google Scholar 

  43. Qing G, Zhang S, Wang B, et al. Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4627–34.

    Article  PubMed  Google Scholar 

  44. Floyd TF, Ratcliffe SJ, Wang J, Resch B, Detre JA. Precision of the CASL-perfusion MRI technique for the measurement of cerebral blood flow in whole brain and vascular territories. J Magn Reson Imaging. 2003;18:649–55.

    Article  PubMed  Google Scholar 

  45. Duncan RO, Sample PA, Bowd C, et al. Arterial spin labeling fMRI measurements of decreased blood flow in primary visual cortex correlates with decreased visual function in human glaucoma. Vis Res. 2012;60:51–60.

    Article  PubMed  Google Scholar 

  46. Harris A, Siesky B, Zarfati D, et al. Relationship of cerebral blood flow and central visual function in primary open-angle glaucoma. J Glaucoma. 2007;16:159–63.

    Article  PubMed  Google Scholar 

  47. Harris A, Zarfati D, Zalish M, et al. Reduced cerebrovascular blood flow velocities and vasoreactivity in open-angle glaucoma. Am J Ophthalmol. 2003;135:144–7.

    Article  PubMed  Google Scholar 

  48. Zhang S, Xie Y, Yang J, et al. Reduced cerebrovascular reactivity in posterior cerebral arteries in patients with primary open-angle glaucoma. Ophthalmology. 2013;120:2501–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningli Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd. and People's Medical Publishing House, PR of China

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, S. et al. (2020). Glaucomatous Injury of Central Nerve System: The Role of Neuroimaging Technology in the Understanding of Disease. In: Wang, N. (eds) Integrative Ophthalmology. Advances in Visual Science and Eye Diseases, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-13-7896-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7896-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7895-9

  • Online ISBN: 978-981-13-7896-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics