Glaucomatous Injury of Central Nerve System: The Role of Neuroimaging Technology in the Understanding of Disease

  • Shaodan Zhang
  • Guoping Qing
  • Huaizhou Wang
  • Weiwei Chen
  • Chun Zhang
  • Ningli WangEmail author
  • Jiahe Gan
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 3)


Understanding glaucoma is an endless process of continuous integration; for example glaucoma, which was firstly recognized to be a disease limited to the eye, has now been considered as a disease affecting the whole visual pathway with the characteristics of optic nerve injury in addition to corresponding visual field defects. Relevant contents have been elaborated in Chap.  6. In the process of overall integration, medical imaging technology plays an important role. There are varied approaches to study the characteristics and mechanisms of human diseases, especially with the booming progress of life science and modern molecular biology, so that the research can be carried out at the cellular level and molecular level. However, molecular biology has its insurmountable weakness—the limitation of the research object, as researchers can only inspect with clues from all kinds of animal models, autopsy of dead patients, and a small amount of local tissue from patients, and then infer to the human body. Only by morphological and functional observation in vivo could we understand the disease most authentically and effectively, which was barely possible for molecular biological method to achieve, while fortunately the imaging technology provides a means to realize the above purpose. This section discusses the role of neuroimaging techniques in understanding the process of damage to CNS by glaucoma, and it is hopefully that through reading this chapter, the readers would be able to understand advanced neuroimaging techniques used in ophthalmology nowadays; thus they would integrate the research methods of both molecular biology and imaging, the local part as the eye and the whole entire body, to provide new ideas and methods for further understanding glaucoma and other ophthalmic and nervous system diseases.


  1. 1.
    Resnikoff S, Pascolini D, Etya’ale D, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82:844–51.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.CrossRefPubMedGoogle Scholar
  3. 3.
    Nicolela MT. Clinical clues of vascular dysregulation and its association with glaucoma. Can J Ophthalmol. 2008;43:337–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol. 2007;52(Suppl. 2):S144–54.CrossRefPubMedGoogle Scholar
  5. 5.
    Emre M, Orgul S, Gugleta K, Flammer J. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol. 2004;88:662–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tezel G, Wax MB. The immune system and glaucoma. Curr Opin Ophthalmol. 2004;15:80–4.CrossRefPubMedGoogle Scholar
  7. 7.
    Schwartz M, London A. Erratum to: immune maintenance in glaucoma: boosting the body’s own neuroprotective potential. J Ocul Biol Dis Infor. 2009;2:104–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schori H, Kipnis J, Yoles E, et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci U S A. 2001;98:3398–403.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yucel Y, Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res. 2008;173:465–78.CrossRefPubMedGoogle Scholar
  10. 10.
    Yucel YH, Gupta N, Zhang Q, et al. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol. 2006;124:217–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Yucel YH, Zhang Q, Gupta N, et al. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol. 2000;118:378–84.CrossRefPubMedGoogle Scholar
  12. 12.
    Yucel YH, Zhang Q, Weinreb RN, et al. Atrophy of relay neurons in magno-and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci. 2001;42:3216–22.PubMedGoogle Scholar
  13. 13.
    Yucel YH, Zhang Q, Weinreb RN, et al. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22:465–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Gang S, Jinghua W, Jing X, et al. Impairment on neurons of lateral geniculate nucleus in rats with chronic ocular hypertension. Recent Adv Ophthalmol. 2005;6:522–4.Google Scholar
  15. 15.
    Sasaoka M, Nakamura K, Shimazawa M, et al. Changes in visual fields and lateral geniculate nucleus in monkey laser-induced high intraocular pressure model. Exp Eye Res. 2008;86:770–82.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang X, Sam-Wah TS, Ng YK. Nitric oxide, microglial activities and neuronal cell death in the lateral geniculate nucleus of glaucomatous rats. Brain Res. 2000;878:136–47.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang S, Wang H, Lu Q, et al. Detection of early neuron degeneration and accompanying glial responses in the visual pathway in a rat model of acute intraocular hypertension. Brain Res. 2009;1303:131–43.CrossRefPubMedGoogle Scholar
  18. 18.
    Crawford ML, Harwerth RS, Smith EL 3rd, et al. Experimental glaucoma in primates: changes in cytochrome oxidase blobs in V1 cortex. Invest Ophthalmol Vis Sci. 2001;42:358–64.PubMedGoogle Scholar
  19. 19.
    Crawford ML, Harwerth RS, Smith EL 3rd, et al. Glaucoma in primates: cytochrome oxidase reactivity in parvo-and magnocellular pathways. Invest Ophthalmol Vis Sci. 2000;41:1791–802.PubMedGoogle Scholar
  20. 20.
    Vickers JC, Hof PR, Schumer RA, et al. Magnocellular and parvocellular visual pathways are both affected in a macaque monkey model of glaucoma. Aust N Z J Ophthalmol. 1997;25:239–43.CrossRefPubMedGoogle Scholar
  21. 21.
    Chan KC, So KF, Wu EX. Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma. Exp Eye Res. 2009;88:65–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Lam DY, Kaufman PL, Gabelt BT, To EC, Matsubara JA. Neurochemical correlates of cortical plasticity after unilateral elevated intraocular pressure in a primate model of glaucoma. Invest Ophthalmol Vis Sci. 2003;44:2573–81.CrossRefPubMedGoogle Scholar
  23. 23.
    Gupta N, Ang LC, Noel de Tilly L, et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90:674–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nucci C, Martucci A, Cesareo M, et al. Brain involvement in glaucoma: advanced neuroimaging for understanding and monitoring a new target for therapy. Curr Opin Pharmacol. 2013;13:128–33.CrossRefPubMedGoogle Scholar
  25. 25.
    Dai H, Mu KT, Qi JP, et al. Assessment of lateral geniculate nucleus atrophy with 3T MR imaging and correlation with clinical stage of glaucoma. AJNR Am J Neuroradiol. 2011;32:1347–53.CrossRefPubMedGoogle Scholar
  26. 26.
    Hernowo AT, Boucard CC, Jansonius NM, et al. Automated morphometry of the visual pathway in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2011;52:2758–66.CrossRefPubMedGoogle Scholar
  27. 27.
    Boucard CC, Hernowo AT, Maguire RP, et al. Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain. 2009;132:1898–906.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chen WW, Wang N, Cai S, et al. Structural brain abnormalities in patients with primary open-angle glaucoma: a study with 3T MR imaging. Invest Ophthalmol Vis Sci. 2013;54:545–54.CrossRefPubMedGoogle Scholar
  29. 29.
    Li C, Cai P, Shi L, et al. Voxel-based morphometry of the visual-related cortex in primary open angle glaucoma. Curr Eye Res. 2012;37:794–802.CrossRefPubMedGoogle Scholar
  30. 30.
    Garaci FG, Bolacchi F, Cerulli A, et al. Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3-T diffusion-tensor MR imaging. Radiology. 2009;252:496–501.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen Z, Lin F, Wang J, et al. Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma. Clin Exp Ophthalmol. 2013;41:43–9.CrossRefPubMedGoogle Scholar
  32. 32.
    El-Rafei A, Engelhorn T, Wärntges S, et al. Glaucoma classification based on visual pathway analysis using diffusion tensor imaging. Magn Reson Imaging. 2013;31(7):1081–91.CrossRefPubMedGoogle Scholar
  33. 33.
    Chang ST, Xu J, Trinkaus K, et al. Optic nerve diffusion tensor imaging parameters and their correlation with optic disc topography and disease severity in adult glaucoma patients and controls. J Glaucoma. 2013;23(8):513–20.CrossRefGoogle Scholar
  34. 34.
    Murai H, Suzuki Y, Kiyosawa M, et al. Positive correlation between the degree of visual field defect and optic radiation damage in glaucoma patients. Jpn J Ophthalmol. 2013;57:257–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Dai H, Yin D, Hu C, et al. Whole-brain voxel-based analysis of diffusion tensor MRI parameters in patients with primary open angle glaucoma and correlation with clinical glaucoma stage. Neuroradiology. 2013;55:233–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Boucard CC, Mostert JP, Cornelissen FW, et al. Visual stimulation, 1H MR spectroscopy and fMRI of the human visual pathways. Eur Radiol. 2005;15:47–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Block W, Traber F, Flacke S, et al. In-vivo proton MR-spectroscopy of the human brain: assessment of N-acetylaspartate (NAA) reduction as a marker for neurodegeneration. Amino Acids. 2002;23:317–23.CrossRefPubMedGoogle Scholar
  38. 38.
    Gomez-Anson B, Alegret M, Munoz E, et al. Decreased frontal choline and neuropsychological performance in preclinical Huntington disease. Neurology. 2007;68:906–10.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang Y, Chen X, Wen G, et al. Proton magnetic resonance spectroscopy ((1) H-MRS) reveals geniculocalcarine and striate area degeneration in primary glaucoma. PLoS One. 2013;8(8):e73197.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Boucard CC, Hoogduin JM, van der Grond J, Cornelissen FW. Occipital proton magnetic resonance spectroscopy (1H-MRS) reveals normal metabolite concentrations in retinal visual field defects. PLoS One. 2007;2:222.CrossRefGoogle Scholar
  41. 41.
    Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:9868–72.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Duncan RO, Sample PA, Weinreb RN, et al. Retinotopic organization of primary visual cortex in glaucoma: comparing fMRI measurements of cortical function with visual field loss. Prog Retin Eye Res. 2007;26:38–56.CrossRefPubMedGoogle Scholar
  43. 43.
    Qing G, Zhang S, Wang B, et al. Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4627–34.CrossRefPubMedGoogle Scholar
  44. 44.
    Floyd TF, Ratcliffe SJ, Wang J, Resch B, Detre JA. Precision of the CASL-perfusion MRI technique for the measurement of cerebral blood flow in whole brain and vascular territories. J Magn Reson Imaging. 2003;18:649–55.CrossRefPubMedGoogle Scholar
  45. 45.
    Duncan RO, Sample PA, Bowd C, et al. Arterial spin labeling fMRI measurements of decreased blood flow in primary visual cortex correlates with decreased visual function in human glaucoma. Vis Res. 2012;60:51–60.CrossRefPubMedGoogle Scholar
  46. 46.
    Harris A, Siesky B, Zarfati D, et al. Relationship of cerebral blood flow and central visual function in primary open-angle glaucoma. J Glaucoma. 2007;16:159–63.CrossRefPubMedGoogle Scholar
  47. 47.
    Harris A, Zarfati D, Zalish M, et al. Reduced cerebrovascular blood flow velocities and vasoreactivity in open-angle glaucoma. Am J Ophthalmol. 2003;135:144–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang S, Xie Y, Yang J, et al. Reduced cerebrovascular reactivity in posterior cerebral arteries in patients with primary open-angle glaucoma. Ophthalmology. 2013;120:2501–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and People's Medical Publishing House, PR of China 2020

Authors and Affiliations

  • Shaodan Zhang
    • 1
  • Guoping Qing
    • 2
    • 3
    • 4
  • Huaizhou Wang
    • 2
    • 3
    • 4
  • Weiwei Chen
    • 4
    • 5
  • Chun Zhang
    • 6
  • Ningli Wang
    • 4
    • 7
    Email author
  • Jiahe Gan
    • 4
    • 7
  1. 1.The Eye Hospital, School of Ophthalmology & OptometryWenzhou Medical University, Glaucoma Research Institute of Wenzhou Medical UniversityZhejiangChina
  2. 2.Beijing Tongren Eye CenterBeijingChina
  3. 3.Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
  4. 4.Beijing Ophthalmology and Visual Sciences Key LaboratoryBeijingChina
  5. 5.Beijing Institute of Ophthalmology, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  6. 6.Department of OphthalmologyPeking University Third HospitalBeijingChina
  7. 7.Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical UniversityBeijingChina

Personalised recommendations