Understanding Primary Open-Angle Glaucoma from the Perspective Beyond Ophthalmology

  • Ningli Wang
  • Xiangxiang Liu
  • Diya YangEmail author
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 3)


Primary open-angle glaucoma has been recognized for several hundred years. Initially, it was defined as an eye disease of characteristic structural change of optic nerves and specific visual change caused by increased intraocular pressure (IOP). However, when we comprehended the development and progress of glaucoma only limiting to perspective of the eye itself, we could hardly interpret some problems we encountered clinically. For example, some glaucoma patients’ IOP is in normal range (normal tension glaucoma); meanwhile, some people have long-term IOP higher than normal range, and there is no pathological change of their optic nerves; some glaucoma patients have IOP controlled in normal range by drugs or surgeries, while impairment of their optic nerves and vision are still gradually worsening; some patients with nervous system diseases have glaucoma at the same time. Are those phenomena occasional or there are some correlations yet not discovered? In order to answer the above questions, the ophthalmologist must expand their vision, and not only consider the eye as a part of the whole body, but also think with “integration” concept, and comprehend comprehensively beyond eyeball itself. In this section, the author will regard the eye as part of central nervous system, and propose an innovative theory of “trans-lamina cribrosa pressure gradient” and a concept as “glaucoma being a disease of central visual pathway” by considering both topical ocular circulation and body fluid circulation in combination, which shall open a wide field for glaucoma study. This chapter expounds on our cognitive process of primary open-angle glaucoma, and hopefully helps you feel the charm of “integration,” and set out from the concept of integration in future study and work, and thus maybe such perspective change will open a brand new world.


  1. 1.
    Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–11.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Liang YB, Friedman DS, Zhou Q, et al. Prevalence of primary open angle glaucoma in a rural adult Chinese population: the Handan eye study. Invest Ophthalmol Vis Sci. 2011;52(11):8250–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang NL, Friedman DS, Zhou Q, et al. A population-based assessment of 24-hour intraocular pressure among subjects with primary open-angle glaucoma: the Handan Eye Study. Invest Ophthalmol Vis Sci. 2011;52(11):7817–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–13. discussion 829–830CrossRefPubMedGoogle Scholar
  5. 5.
    Schlamp CL, Li Y, Dietz JA, et al., Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric. BMC Neurosci, 2006. 7:66.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Crish SD, Sappington RM, Inman DM, et al. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci U S A. 2010;107(11):5196–201.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Swanson WH, Felius J, Pan F. Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. Invest Ophthalmol Vis Sci. 2004;45(2):466–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Su JH, Deng D, Cotman CW. Transneuronal degeneration in the spread of Alzheimer’s disease pathology: immunohistochemical evidence for the transmission of tau hyperphosphorylation. Neurobiol Dis. 1997;4(5):365–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Crawford ML, Harwerth RS, Smith EL 3rd, et al. Glaucoma in primates: cytochrome oxidase reactivity in parvo- and magnocellular pathways. Invest Ophthalmol Vis Sci. 2000;41(7):1791–802.PubMedGoogle Scholar
  10. 10.
    Weber AJ, Chen H, Hubbard WC, et al. Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci. 2000;41(6):1370–9.PubMedGoogle Scholar
  11. 11.
    Yücel YH, Zhang Q, Weinreb RN, et al. Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci. 2001;42(13):3216–22.PubMedGoogle Scholar
  12. 12.
    Yücel YH, Zhang Q, Gupta N, et al. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol. 2000;118(3):378–84.CrossRefPubMedGoogle Scholar
  13. 13.
    Yücel YH, Zhang Q, Weinreb RN, et al. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22(4):465–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Gupta N, Ly T, Zhang Q, et al. Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. Exp Eye Res. 2007;84(1):176–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang S, Wang H, Lu Q, et al. Detection of early neuron degeneration and accompanying glial responses in the visual pathway in a rat model of acute intraocular hypertension. Brain Res. 2009;1303:131–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Gupta N, Ang LC, Noël de Tilly L, et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90(6):674–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gupta N, Greenberg G, de Tilly LN, et al. Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br J Ophthalmol. 2009;93(1):56–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Duncan RO, Sample PA, Weinreb RN, et al. Retinotopic organization of primary visual cortex in glaucoma: comparing fMRI measurements of cortical function with visual field loss. Prog Retin Eye Res. 2007;26(1):38–56.CrossRefPubMedGoogle Scholar
  19. 19.
    Qing G, Zhang S, Wang B, et al. Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2010;51(9):4627–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Chiquet C, Drouyer E, Woldemussie E, et al. Consequences of glaucoma on circadian and central visual systems. J Fr Ophtalmol. 2006;29(7):847–51.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang HZ, Lu QJ, Wang NL, et al. Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model. Chin Med J. 2008;121(11):1015–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Huaizhou W, Jie H, Ningli W. The effects of acuter intraocular pressure elevation on melanopsin-containing retinal ganglion cells. Chin Ophthalmic Res. 2009;27:558–62.Google Scholar
  23. 23.
    Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–66.CrossRefPubMedGoogle Scholar
  24. 24.
    Ren R, Zhang X, Wang N, et al. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011;89(2):e142–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Berdahl JP, Fautsch MP, Stinnett SS, et al. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49(12):5412–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang N, Xie X, Yang D, et al. Orbital cerebrospinal fluid space in Glaucoma: The Beijing iCOP Study. Ophthalmology. 2012;119(10):2065–73.CrossRefPubMedGoogle Scholar
  28. 28.
    Xie X, Zhang X, Fu J, et al. Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Crit Care. 2013;17(4):R162.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jonas JB, Wang N, Wang YX, You QS, Xie X, Yang D, Xu L. Body height, estimated cerebrospinal fluid pressure and open-angle glaucoma. The Beijing eye study 2011. PLoS One. 2014;9(1):e86678.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jonas JB, Nangia V, Wang N, et al. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The central India eye and medical study. PLoS One. 2013;8:e82284.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yang D, Fu J, Hou R, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014;55:3067–73.CrossRefPubMedGoogle Scholar
  32. 32.
    Yoneda S, Hara H, Hirata A, et al. Vitreous fluid levels of beta-amyloid((1–42)) and tau in patients with retinal diseases. Jpn J Ophthalmol. 2005;49(2):106–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Engelborghs S, De Vreese K, Van de Casteele T, et al. Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia. Neurobiol Aging. 2008;29(8):1143–59.CrossRefPubMedGoogle Scholar
  34. 34.
    Gupta N, Fong J, Ang LC, et al. Retinal tau pathology in human glaucomas. Can J Ophthalmol. 2008;43(1):53–60.CrossRefPubMedGoogle Scholar
  35. 35.
    McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, et al. Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci. 2002;43(4):1077–87.PubMedGoogle Scholar
  36. 36.
    Guo L, Salt TE, Luong V, et al. Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci U S A. 2007;104(33):13444–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hinton DR, Sadun AA, Blanks JC, et al. Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med. 1986;315(8):485–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Blanks JC, Hinton DR, Sadun AA, et al. Retinal ganglion cell degeneration in Alzheimer’s disease. Brain Res. 1989;501:364–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Tamura H, Kawakami H, Kanamoto T, et al. High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci. 2006;246(1–2):79–83.CrossRefPubMedGoogle Scholar
  40. 40.
    Bayer AU, Keller ON, Ferrari F, et al. Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer’s disease and Parkinson’s disease. Am J Ophthalmol. 2002;133(1):135–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Bayer AU, Ferrari F, Erb C. High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol. 2002;47:165–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Lu Y, Li Z, Zhang X, et al. Retinal nerve fiber layer structure abnormalities in early Alzheimer’s disease: evidence in optical coherence tomography. Neurosci Lett. 2010;480:69–72.CrossRefPubMedGoogle Scholar
  43. 43.
    Kountouras J, Zavos C, Gavalas E, et al. Normal-tension glaucoma and Alzheimer’s disease: helicobacter pylori as a possible common underlying risk factor. Med Hypotheses. 2007;68(1):228–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Kessing LV, Lopez AG, Andersen PK, et al. No increased risk of developing Alzheimer disease in patients with glaucoma. J Glaucoma. 2007;16(1):47–51.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and People's Medical Publishing House, PR of China 2020

Authors and Affiliations

  1. 1.Beijing Institute of OphthalmologyBeijing Tongren Eye Center, Beijing Tongren Hosptial, Capital Medical UniversityBeijingChina
  2. 2.Beijing Ophthalmology and Visual Sciences Key LaboratoryBeijingChina

Personalised recommendations