Advertisement

The Eye and High Altitude

  • Yuan Xie
  • Ningli WangEmail author
Chapter
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 3)

Abstract

High altitude is defined to begin at 2400 m (8000 ft) above sea level. Medicine recognizes that altitude above 1500 m (4900 ft) starts to affect humans. The main environment at high altitude includes low atmospheric pressure causing lower oxygen partial pressure (PO2), decreased temperature and humidity, as well as high solar ultraviolet (UV) radiation. These special surroundings have both short-term and long-term effects on the eye.

References

  1. 1.
    Grimm C, Willmann G. Hypoxia in the eye: a two-sided coin. High Alt Med Biol. 2012;13(3):169–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Vecchi D, et al. Visual function at altitude under night vision assisted conditions. Aviat Space Environ Med. 2014;85(1):60–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Adhikari S. Myopia in school children from high mountain region of Nepal. Nepal J Ophthalmol. 2013;5(2):246–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Gnyawali S, et al. Ocular morbidity among porters at high altitudes. Nepal J Ophthalmol. 2017;9(18):30–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Kohnen T. Effects of refractive surgery in extreme altitude or space. J Cataract Refract Surg. 2012;38(8):1307–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Willmann G, et al. Effects on colour discrimination during long term exposure to high altitudes on Mt Everest. Br J Ophthalmol. 2010;94(10):1393–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Schatz A, et al. Attenuation of S-cone function at high altitude assessed by electroretinography. Vis Res. 2014;97:59–64.CrossRefPubMedGoogle Scholar
  8. 8.
    Davies AJ, et al. Changes to colour vision on exposure to high altitude. J R Army Med Corps. 2011;157(1):107–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Fulk GW, West RW, Nakagawara VB. Effect of simulated altitude on the visual fields of glaucoma patients and the elderly. Optom Vis Sci. 1991;68(5):344–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Yap MK, et al. Effects of exposure to simulated altitudes on visual fields, contrast sensitivity, and dazzle recovery. Aviat Space Environ Med. 1995;66(3):243–6.PubMedGoogle Scholar
  11. 11.
    Horng CT, et al. Visual fields during acute exposure to a simulated altitude of 7620 m. Aviat Space Environ Med. 2008;79(7):666–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Ho TY, et al. High-altitude retinopathy after climbing Mount Aconcagua in a group of experienced climbers. Retina. 2011;31(8):1650–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Karakucuk S, et al. Changes in central corneal thickness, intraocular pressure, and oxidation/antioxidation parameters at high altitude. Aviat Space Environ Med. 2012;83(11):1044–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Karadag R, et al. The effect of short-term hypobaric hypoxic exposure on intraocular pressure. Curr Eye Res. 2008;33(10):864–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Somner JE, et al. What happens to intraocular pressure at high altitude? Invest Ophthalmol Vis Sci. 2007;48(4):1622–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Bosch MM, et al. Intraocular pressure during a very high altitude climb. Invest Ophthalmol Vis Sci. 2010;51(3):1609–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Pavlidis M, et al. Intraocular pressure changes during high-altitude acclimatization. Graefes Arch Clin Exp Ophthalmol. 2006;244(3):298–304.CrossRefPubMedGoogle Scholar
  18. 18.
    Baertschi M, Dayhaw-Barker P, Flammer J. The effect of hypoxia on intra-ocular, mean arterial, retinal venous and ocular perfusion pressures. Clin Hemorheol Microcirc. 2016;63(3):293–303.CrossRefPubMedGoogle Scholar
  19. 19.
    Willmann G, et al. Effect of high altitude exposure on intraocular pressure using Goldmann Applanation tonometry. High Alt Med Biol. 2017;18:114.CrossRefPubMedGoogle Scholar
  20. 20.
    Nebbioso M, et al. Hypobaric hypoxia: effects on intraocular pressure and corneal thickness. Scientific World Journal. 2014;2014:585218.CrossRefPubMedGoogle Scholar
  21. 21.
    Bayer A, et al. Intraocular pressure measured at ground level and 10,000 feet. Aviat Space Environ Med. 2004;75(6):543–5.PubMedGoogle Scholar
  22. 22.
    Cymerman A, et al. Intraocular pressure and acclimatization to 4300 M altitude. Aviat Space Environ Med. 2000;71(10):1045–50.PubMedGoogle Scholar
  23. 23.
    Willmann G, et al. Impact of acute exposure to high altitude on anterior chamber geometry. Invest Ophthalmol Vis Sci. 2013;54(6):4241–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Ortiz GJ, et al. Effect of cold air on aqueous humor dynamics in humans. Invest Ophthalmol Vis Sci. 1988;29(1):138–40.PubMedGoogle Scholar
  25. 25.
    Salman MS. Can intracranial pressure be measured non-invasively? Lancet. 1997;350(9088):1367.CrossRefPubMedGoogle Scholar
  26. 26.
    Casperson KJ, Freer L. Increased intraocular pressure measured by portable tonometry is a specific indicator of high altitude cerebral edema. Lawrence: Wilderness & Environmental Medicine (Allen Press); 2008.Google Scholar
  27. 27.
    Chatterjee SK, Chakraborty A. Intraocular pressure changes and mountaineering--preliminary observations and possible application. J Assoc Physicians India. 2001;49:248–52.PubMedGoogle Scholar
  28. 28.
    Sheeran P, Bland JM, Hall GM. Intraocular pressure changes and alterations in intracranial pressure. Lancet. 2000;355(9207):899.CrossRefPubMedGoogle Scholar
  29. 29.
    Noble J, et al. Evaluating the safety of air travel for patients with scleral buckles and small volumes of intraocular gas. Br J Ophthalmol. 2014;98(9):1226–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Brosh K, Strassman I, Seelenfreund M. High intraocular pressure in four vitrectomized eyes with intravitreal C3F8 without high altitude travel. Eye (Lond). 2014;28(7):892–4.CrossRefGoogle Scholar
  31. 31.
    Amini R, et al. Computational simulation of altitude change-induced intraocular pressure alteration in patients with intravitreal gas bubbles. Retina. 2011;31(8):1656–63.CrossRefPubMedGoogle Scholar
  32. 32.
    Ferrini W, Pournaras JA, Wolfensberger TJ. Expansion of intraocular gas bubbles due to altitude: do meteorological factors play a role? Klin Monatsbl Augenheilkd. 2010;227(4):312–4.CrossRefPubMedGoogle Scholar
  33. 33.
    Silvanus MT, et al. Visual loss following intraocular gas injection. Dtsch Arztebl Int. 2008;105(6):108–12.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Polk JD, et al. Central retinal artery occlusion by proxy: a cause for sudden blindness in an airline passenger. Aviat Space Environ Med. 2002;73(4):385–7.PubMedGoogle Scholar
  35. 35.
    Kokame GT, Ing MR. Intraocular gas and low-altitude air flight. Retina. 1994;14(4):356–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Mills MD, et al. An assessment of intraocular pressure rise in patients with gas-filled eyes during simulated air flight. Ophthalmology. 2001;108(1):40–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Gupta N, et al. Prevalence of dry eye at high altitude: a case controlled comparative study. High Alt Med Biol. 2008;9(4):327–34.CrossRefPubMedGoogle Scholar
  38. 38.
    Lu P, et al. Dry eye syndrome in elderly Tibetans at high altitude: a population-based study in China. Cornea. 2008;27(5):545–51.CrossRefPubMedGoogle Scholar
  39. 39.
    Willmann G, et al. Exposure to high altitude alters tear film osmolarity and breakup time. High Alt Med Biol. 2014;15(2):203–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Jha KN. High altitude and the eye. Asia Pac J Ophthalmol (Phila). 2012;1(3):166–9.CrossRefGoogle Scholar
  41. 41.
    Malekifar P, et al. Risk factors for pterygium in Ilam Province, Iran. J Ophthalmic Vis Res. 2017;12(3):270–4.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shrestha S, Shrestha SM. Comparative study of prevalence of pterygium at high altitude and Kathmandu Valley. J Nepal Health Res Counc. 2014;12(28):187–90.PubMedGoogle Scholar
  43. 43.
    Bosch MM, Barthelmes D, Merz TM, et al. New insights into changes in corneal thickness in healthy mountaineers during a very-high-altitude climb to Mount Muztagh Ata. Arch Ophthalmol. 2010;128(2):184–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Patyal S, et al. Corneal thickness in highlanders. High Alt Med Biol. 2017;18(1):56–60.CrossRefPubMedGoogle Scholar
  45. 45.
    Schultheiss M, et al. Pupillary light reaction during high altitude exposure. PLoS One. 2014;9(2):e87889.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dattani RS, et al. Pupil dynamics in hypoxic conditions: Caudwell Xtreme Everest results. High Alt Med Biol. 2014;15(3):422–3.CrossRefPubMedGoogle Scholar
  47. 47.
    Shrestha S, Shrestha SM, Gurung A. Comparative study of prevalence of cataract at high altitude and Kathmandu Valley. J Nepal Health Res Counc. 2016;14(33):81–4.PubMedGoogle Scholar
  48. 48.
    Delcourt C, et al. Lifetime exposure to ambient ultraviolet radiation and the risk for cataract extraction and age-related macular degeneration: the Alienor Study. Invest Ophthalmol Vis Sci. 2014;55(11):7619–27.CrossRefPubMedGoogle Scholar
  49. 49.
    Wang Y, et al. The relationship between the disability prevalence of cataracts and ambient erythemal ultraviolet radiation in China. PLoS One. 2012;7(11):e51137.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    McFadden DM, et al. High-altitude retinopathy. JAMA. 1981;245(6):581–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Willmann G, et al. Retinal vessel leakage at high altitude. JAMA. 2013;309(21):2210–2.CrossRefPubMedGoogle Scholar
  52. 52.
    Wiedman M, Tabin GC. High-altitude retinopathy and altitude illness. Ophthalmology. 1999;106(10):1924–6; discussion 1927CrossRefPubMedGoogle Scholar
  53. 53.
    Mullner-Eidenbock A, et al. High-altitude retinopathy and retinal vascular dysregulation. Eye (Lond). 2000;14(Pt 5):724–9.CrossRefGoogle Scholar
  54. 54.
    Arjamaa O, Nikinmaa M. Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res. 2006;83(3):473–83.CrossRefPubMedGoogle Scholar
  55. 55.
    Frayser R, et al. Retinal hemorrhage at high altitude. N Engl J Med. 1970;282(21):1183–4.CrossRefPubMedGoogle Scholar
  56. 56.
    Clarke C, Duff J. Mountain sickness, retinal haemorrhages, and acclimatization on Mount Everest in 1975. Br Med J. 1976;2(6034):495–7.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Barthelmes D, et al. Delayed appearance of high altitude retinal hemorrhages. PLoS One. 2011;6(2):e11532.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Schommer K, et al. Hemosiderin deposition in the brain as footprint of high-altitude cerebral edema. Neurology. 2013;81(20):1776–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Brugniaux JV, et al. Cerebrovascular responses to altitude. Respir Physiol Neurobiol. 2007;158(2–3):212–23.CrossRefPubMedGoogle Scholar
  60. 60.
    Bosch MM, et al. New insights into ocular blood flow at very high altitudes. J Appl Physiol (1985). 2009;106(2):454–60.CrossRefGoogle Scholar
  61. 61.
    Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol. 2009;8(2):175–91.CrossRefPubMedGoogle Scholar
  62. 62.
    Wilson MH, et al. Cerebral venous system and anatomical predisposition to high-altitude headache. Ann Neurol. 2013;73(3):381–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Willmann G, et al. Missing correlation of retinal vessel diameter with high-altitude headache. Ann Clin Transl Neurol. 2014;1(1):59–63.CrossRefPubMedGoogle Scholar
  64. 64.
    Willmann G, et al. Update on high altitude cerebral edema including recent work on the eye. High Alt Med Biol. 2014;15(2):112–22.CrossRefPubMedGoogle Scholar
  65. 65.
    Fagenholz PJ, et al. Optic nerve sheath diameter correlates with the presence and severity of acute mountain sickness: evidence for increased intracranial pressure. J Appl Physiol. 2009;106(4):1207–11.CrossRefPubMedGoogle Scholar
  66. 66.
    Lawley JS, et al. Optic nerve sheath diameter is not related to high altitude headache: a randomized controlled trial. High Alt Med Biol. 2012;13(3):193–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Sutherland AI, et al. Optic nerve sheath diameter, intracranial pressure and acute mountain sickness on Mount Everest: a longitudinal cohort study. Br J Sports Med. 2008;42(3):183–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Kanaan NC, et al. Optic nerve sheath diameter increase on ascent to high altitude: correlation with Acute Mountain sickness. J Ultrasound Med. 2015;34(9):1677–82.CrossRefPubMedGoogle Scholar
  69. 69.
    Keyes LE, Paterson R, Boatright D. Optic nerve sheath diameter and acute mountain sickness. Wilderness Environ Med. 2013;24(2):105–11.CrossRefPubMedGoogle Scholar
  70. 70.
    Liu H, Yang D, Ma T, et al. Measurement and associations of the optic nerve subarachnoid space in normal tension and primary open angle glaucoma. Am J Ophthalmol. 2018;186:128–37.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and People's Medical Publishing House, PR of China 2020

Authors and Affiliations

  1. 1.Beijing Institute of OphthalmologyBeijingChina
  2. 2.Beijing Tongren Eye CenterBeijingChina
  3. 3.Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  4. 4.Beijing Ophthalmology and Visual Sciences Key LaboratoryBeijingChina
  5. 5.Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HosptialCapital Medical UniversityBeijingChina

Personalised recommendations