Skip to main content

Host Response Against Hyperbaric Diving Stresses

  • Chapter
  • First Online:
  • 601 Accesses

Abstract

Diving is a very stressful condition for humans. In addition to limited measures for breathing gas supply, hyperbaric and/or hyperoxic stresses are associated with various kinds of diving measures depending upon the diving procedures. Factors affecting host responses may include not only types of diving or concomitant factors such as gas supply systems and breathing gases themselves but also various situations caused under high pressure. Hyperbaric diving stresses are very unique from the viewpoint of diving physiology as well as an emerging discipline, e.g., molecular based medicine. In this chapter, host response against hyperbaric and/or hyperoxic stresses is discussed through the mechanisms of diving-related disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wilmshurst P. Diving and oxygen. BMJ. 1998;317:996–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bove AA. Risk of decompression sickness with patent foramen ovale. Undersea Hyperb Med. 1998;25:175–8.

    CAS  PubMed  Google Scholar 

  3. Torti SR, et al. Risk of decompression illness among 230 divers in relation to the presence and size of patent foramen ovale. Eur Heart J. 2004;25:1014–20.

    Article  PubMed  Google Scholar 

  4. Gardette B, Massimelli J, Comet M, Gortan C, Delauze H. Deep hydrogen diving: HYDRA 10-A 701 MSW RECORD DIVE. In: The Undersea and Hyperbaric Medical Society, Inc. Annual Scientific Meeting, Halifax, Nova Scotia, Canada; 1993.

    Google Scholar 

  5. Lafay V, Barthelemy P, Comet B, Frances Y, Jammes Y. ECG changes during the experimental human dive HYDRA 10 (71 atm/7,200 kPa). Undersea Hyperb Med. 1995;22:51–60.

    CAS  PubMed  Google Scholar 

  6. Liou K, et al. Patent foramen ovale influences the presentation of decompression illness in SCUBA divers. Heart Lung Circ. 2015;24:26–31.

    Article  PubMed  Google Scholar 

  7. Shastri KA, Logue GL, Lundgren CE. In vitro activation of human complement by nitrogen bubbles. Undersea Biomed Res. 1991;18:157–65.

    CAS  PubMed  Google Scholar 

  8. Ward CA, McCullough D, Fraser WD. Relation between complement activation and susceptibility to decompression sickness. J Appl Physiol. 1987;62:1160–6.

    Article  CAS  PubMed  Google Scholar 

  9. Stevens DM, et al. Complement activation during saturation diving. Undersea Hyperb Med. 1993;20:279–88.

    CAS  PubMed  Google Scholar 

  10. Nyquist P, Ball R, Sheridan MJ. Complement levels before and after dives with a high risk of DCS. Undersea Hyperb Med. 2007;34:191–7.

    CAS  PubMed  Google Scholar 

  11. Huang KL, Lin YC. Activation of complement and neutrophils increases vascular permeability during air embolism. Aviat Space Environ Med. 1997;68:300–5.

    CAS  PubMed  Google Scholar 

  12. Barak M, Katz Y. Microbubbles: pathophysiology and clinical implications. Chest. 2005;128:2918–32.

    Article  PubMed  Google Scholar 

  13. Zhang K, et al. Endothelial dysfunction correlates with decompression bubbles in rats. Sci Rep. 2016;6:33390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eftedal OS, Lydersen S, Brubakk AO. The relationship between venous gas bubbles and adverse effects of decompression after air dives. Undersea Hyperb Med. 2007;34:99–105.

    CAS  PubMed  Google Scholar 

  15. Bayne CG, Hunt WS, Johanson DC, Flynn ET, Weathersby PK. Doppler bubble detection and decompression sickness: a prospective clinical trial. Undersea Biomed Res. 1985;12:327–32.

    CAS  PubMed  Google Scholar 

  16. Carturan D, et al. Circulating venous bubbles in recreational diving: relationships with age, weight, maximal oxygen uptake and body fat percentage. Int J Sports Med. 1999;20:410–4.

    Article  CAS  PubMed  Google Scholar 

  17. Blogg SL, Gennser M, Mollerlokken A, Brubakk AO. Ultrasound detection of vascular decompression bubbles: the influence of new technology and considerations on bubble load. Diving Hyperb Med. 2014;44:35–44.

    PubMed  Google Scholar 

  18. Skogland S, Stuhr LE, Sundland H, Marstein S, Hope A. Increased oxygen before and during decompression reduces bubble formation in rats. Undersea Hyperb Med. 2003;30:37–46.

    CAS  PubMed  Google Scholar 

  19. Van Liew HD, Conkin J, Burkard ME. The oxygen window and decompression bubbles: estimates and significance. Aviat Space Environ Med. 1993;64:859–65.

    PubMed  Google Scholar 

  20. Pontier JM, Lambrechts K. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression. Eur J Appl Physiol. 2014;114:1175–81.

    Article  CAS  PubMed  Google Scholar 

  21. Fan DF, et al. Hyperbaric oxygen preconditioning reduces the incidence of decompression sickness in rats via nitric oxide. Undersea Hyperb Med. 2010;37:173–80.

    CAS  PubMed  Google Scholar 

  22. Ni XX, et al. Heat-shock protein 70 is involved in hyperbaric oxygen preconditioning on decompression sickness in rats. Exp Biol Med (Maywood). 2013;238:12–22.

    Article  CAS  Google Scholar 

  23. Gempp E, Blatteau JE. Preconditioning methods and mechanisms for preventing the risk of decompression sickness in scuba divers: a review. Res Sports Med. 2010;18:205–18.

    Article  PubMed  Google Scholar 

  24. Camporesi EM, Bosco G. Hyperbaric oxygen pretreatment and preconditioning. Undersea Hyperb Med. 2014;41:259–63.

    PubMed  Google Scholar 

  25. Balestra C, et al. Pre-dive whole-body vibration better reduces decompression-induced vascular gas emboli than oxygenation or a combination of both. Front Physiol. 2016;7:586.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bennett PB. Psychometric impairment in men breathing oxygen-helium at increased pressures. In: Underwater physiology subcommittee report no. 251. London: Medical Research Council; 1965.

    Google Scholar 

  27. Bennett PB, Janke N, Kolb M, Schwieger E. Use of EEG digital filtering and display for HPNS diagnosis. Undersea Biomed Res. 1986;13:99–110.

    CAS  PubMed  Google Scholar 

  28. Gilman SC, Colton JS, Hallenbeck JM. Effect of pressure on [3H] GABA release by synaptosomes isolated from cerebral cortex. J Appl Physiol. 1986;61:2067–73.

    Article  CAS  PubMed  Google Scholar 

  29. Zinebi F, Fagni L, Hugon M. The influence of helium pressure on the reduction induced in field potentials by various amino acids and on the GABA-mediated inhibition in the CA1 region of hippocampal slices in the rat. Neuropharmacology. 1988;27:57–65.

    Article  CAS  PubMed  Google Scholar 

  30. Bennett PB, Coggin R, McLeod M. Effect of compression rate on use of trimix to ameliorate HPNS in man to 686 m (2250 ft). Undersea Biomed Res. 1982;9:335–51.

    CAS  PubMed  Google Scholar 

  31. Bennett PB, Schafstall H. Scope and design of the GUSI international research program. Undersea Biomed Res. 1992;19:231–41.

    CAS  PubMed  Google Scholar 

  32. Bradley ME, Vorosmarti J. Hyperbaric arthralgia during helium-oxygen dives from 100 to 850 fsw. Undersea Biomed Res. 1974;1:151–67.

    CAS  PubMed  Google Scholar 

  33. Bennett PB, Blenkarn GD, Roby J, Youngblood D. Suppression of the high pressure nervous syndrome (HPNS) in human dives to 720 ft and 1000 ft by use of N2/He/O2 in the Undersea and Hyperbaric Medical Society, Inc. Annual Scientific Meeting, Hilton Hotel, Washington, DC; 1974.

    Google Scholar 

  34. Doubt TJ, Evans DE. Effects of hyperbaric oxygen exposure at 31.3 ATA on spontaneously beating cat hearts. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:139–45.

    CAS  PubMed  Google Scholar 

  35. Linnarsson D, Ostlund A, Lind F, Hesser CM. Hyperbaric bradycardia and hypoventilation in exercising men: effects of ambient pressure and breathing gas. J Appl Physiol. 1999;87:1428–32.

    Article  CAS  PubMed  Google Scholar 

  36. Lund V, et al. Hyperbaric oxygen increases parasympathetic activity in professional divers. Acta Physiol Scand. 2000;170:39–44.

    Article  CAS  PubMed  Google Scholar 

  37. Naraki N, Tomizawa G, Mohri M. Evaluation of static work load in a helium-oxygen saturation dive at 31 ATA. Appl Hum Sci. 1996;15:81–6.

    Article  CAS  Google Scholar 

  38. Clarke JR, Jaeger MJ, Zumrick JL, O’Bryan R, Spaur WH. Respiratory resistance from 1 to 46 ATA measured with the interrupter technique. J Appl Physiol Respir Environ Exerc Physiol. 1982;52:549–55.

    CAS  PubMed  Google Scholar 

  39. Imbert G, Colton JS, Long W, Grossman Y, Moore HJ. A system for saturating in vitro preparations with high pressure O2, He, H2, and mixtures. Undersea Biomed Res. 1992;19:49–53.

    CAS  PubMed  Google Scholar 

  40. Hollien H, Shearer W, Hicks JW Jr. Voice fundamental frequency levels of divers in helium-oxygen speaking environments. Undersea Biomed Res. 1977;4:199–207.

    CAS  PubMed  Google Scholar 

  41. Thorsen E, Haave H, Hofso D, Ulvik RJ. Exposure to hyperoxia in diving and hyperbaric medicine—effects on blood cell counts and serum ferritin. Undersea Hyperb Med. 2001;28:57–62.

    CAS  PubMed  Google Scholar 

  42. Doran GR, Chaudry L, Brubakk AO, Garrard MP. Hyperbaric liver dysfunction in saturation divers. Undersea Biomed Res. 1985;12:151–64.

    CAS  PubMed  Google Scholar 

  43. Goldinger JM, Nakayama H, Takeuchi H, Hong SK. Seadragon VI: a 7-day dry saturation dive at 31 ATA. VIII. Plasma enzyme profiles. Undersea Biomed Res. 1987;14:455–9.

    CAS  PubMed  Google Scholar 

  44. Ikeda M, et al. Supplementation of antioxidants prevents oxidative stress during a deep saturation dive. Tohoku J Exp Med. 2004;203:353–7.

    Article  CAS  PubMed  Google Scholar 

  45. Ahlen C, Mandal LH, Iversen OJ. The impact of environmental Pseudomonas aeruginosa genotypes on skin infections in occupational saturation diving systems. Scand J Infect Dis. 2001;33:413–9.

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Barth S, Richardson M, Corson K, Mader J. An outbreak of methicillin-resistant Staphylococcus aureus cutaneous infection in a saturation diving facility. Undersea Hyperb Med. 2003;30:277–84.

    CAS  PubMed  Google Scholar 

  47. Wingelaar TT, van Ooij PA, van Hulst RA. Otitis externa in military divers: more frequent and less harmful than reported. Diving Hyperb Med. 2017;47:4–8.

    PubMed  PubMed Central  Google Scholar 

  48. Semko VV, et al. Immunologic response of divers working in the conditions of increased microbial contamination of water under pressure up to 51 MPa. Fiziol Z. 1991;37:92–7.

    CAS  Google Scholar 

  49. Eckenhoff RG, Hughes JS. Hematologic and hemostatic changes with repetitive air diving. Aviat Space Environ Med. 1984;55:592–7.

    CAS  PubMed  Google Scholar 

  50. Brenner I, Shephard RJ, Shek PN. Immune function in hyperbaric environments, diving, and decompression. Undersea Hyperb Med. 1999;26:27–39.

    CAS  PubMed  Google Scholar 

  51. Xu WG, Tao HY, Liu Y, Sun XJ, Jiang CL. Immune function in rats following repetitive exposures to 7 ATA air. Aviat Space Environ Med. 2007;78:368–73.

    CAS  PubMed  Google Scholar 

  52. Eftedal I, et al. Acute and potentially persistent effects of scuba diving on the blood transcriptome of experienced divers. Physiol Genomics. 2013;45:965–72.

    Article  CAS  PubMed  Google Scholar 

  53. Sureda A, et al. Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils. Physiol Genomics. 2014;46:647–54.

    Article  CAS  PubMed  Google Scholar 

  54. Eftedal I, Flatberg A, Drvis I, Dujic Z. Immune and inflammatory responses to freediving calculated from leukocyte gene expression profiles. Physiol Genomics. 2016;48:795–802.

    Article  CAS  PubMed  Google Scholar 

  55. Shinomiya N, Suzuki S, Hashimoto A, Oiwa H. Effects of deep saturation diving on the lymphocyte subsets of healthy divers. Undersea Hyperb Med. 1994;21:277–86.

    CAS  PubMed  Google Scholar 

  56. Matsuo H, Shinomiya N, Suzuki S. Hyperbaric stress during saturation diving induces lymphocyte subset changes and heat shock protein expression. Undersea Hyperb Med. 2000;27:37–41.

    CAS  PubMed  Google Scholar 

  57. Krog J, et al. Natural killer cells as biomarkers of hyperbaric stress during a dry heliox saturation dive. Aviat Space Environ Med. 2010;81:467–74.

    Article  PubMed  Google Scholar 

  58. Shinomiya N, Suzuki S, Ikeda T, Oiwa H. Immunological capacities during deep saturation diving-changes of lymphocyte subsets under high pressure. In: XXth annual meeting EUBS; 1994. p. 217–22.

    Google Scholar 

  59. Shinomiya N, Suzuki S, Ito M, Hiromichi O. Effect of compression speed on the lymphocyte subset change during deep saturation diving. In: XXIst Annual Meeting of EUBS 95; 1995. p. 37–42.

    Google Scholar 

  60. Husson D, Abbal M, Tafani M, Schmitt DA. Neuroendocrine system and immune responses after confinement. Adv Space Biol Med. 1996;5:93–113.

    Article  CAS  PubMed  Google Scholar 

  61. Schmitt DA, et al. Immune responses in humans after 60 days of confinement. Brain Behav Immun. 1995;9:70–7.

    Article  CAS  PubMed  Google Scholar 

  62. Fructus XR, Agarate C, Naquet R, Rostain JC. Postponing the high pressure nervous syndrome (HPNS) to 1640 feet and beyond. In: Vth Symposium of Underwater Physiology (Fed. Am. Socs Exp. Biol.); 1976. p. 21–33.

    Google Scholar 

  63. Witte J, et al. Dose-time dependency of hyperbaric hyperoxia-induced DNA strand breaks in human immune cells visualized with the comet assay. Undersea Hyperb Med. 2014;41:171–81.

    CAS  PubMed  Google Scholar 

  64. Liu W, et al. Dual effects of hyperbaric oxygen on proliferation and cytotoxic T lymphocyte activity of rat splenic lymphocytes. Undersea Hyperb Med. 2009;36:155–60.

    CAS  PubMed  Google Scholar 

  65. Al-Waili NS, Butler GJ. Effects of hyperbaric oxygen on inflammatory response to wound and trauma: possible mechanism of action. Sci World J. 2006;6:425–41.

    Article  CAS  Google Scholar 

  66. Fismen L, Eide T, Hjelde A, Svardal AM, Djurhuus R. Hyperoxia but not ambient pressure decreases tetrahydrobiopterin level without affecting the enzymatic capability of nitric oxide synthase in human endothelial cells. Eur J Appl Physiol. 2013;113:1695–704.

    Article  CAS  PubMed  Google Scholar 

  67. Montcalm-Smith E, Caviness J, Chen Y, McCarron RM. Stress biomarkers in a rat model of decompression sickness. Aviat Space Environ Med. 2007;78:87–93.

    CAS  PubMed  Google Scholar 

  68. Jorgensen A, Foster PP, Brubakk AO, Eftedal I. Effects of hyperbaric oxygen preconditioning on cardiac stress markers after simulated diving. Physiol Rep. 2013;1:e00169.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Domoto H, et al. Up-regulation of antioxidant proteins in the plasma proteome during saturation diving: unique coincidence under hypobaric hypoxia. PLoS One. 2016;11:e0163804.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fismen L, Hjelde A, Svardal AM, Djurhuus R. Differential effects on nitric oxide synthase, heat shock proteins and glutathione in human endothelial cells exposed to heat stress and simulated diving. Eur J Appl Physiol. 2012;112:2717–25.

    Article  CAS  PubMed  Google Scholar 

  71. Brubakk AO, Ross JA, Thom SR. Saturation diving; physiology and pathophysiology. Compr Physiol. 2014;4:1229–72.

    Article  PubMed  Google Scholar 

  72. Shinomiya N. Effect of hyperbaric stress on human immune system. In: Kannno C, Hayashi R, editors. High pressure bioscience and biotechnology. Kyoto: Sanei Shuppan; 2000. p. 129–38.

    Google Scholar 

  73. Watwood SL, Miller PJ, Johnson M, Madsen PT, Tyack PL. Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus). J Anim Ecol. 2006;75:814–25.

    Article  PubMed  Google Scholar 

  74. Williams TM, et al. Running, swimming and diving modifies neuroprotecting globins in the mammalian brain. Proc Biol Sci. 2008;275:751–8.

    Article  CAS  PubMed  Google Scholar 

  75. Cantu-Medellin N, Byrd B, Hohn A, Vazquez-Medina JP, Zenteno-Savin T. Differential antioxidant protection in tissues from marine mammals with distinct diving capacities. Shallow/short vs. deep/long divers. Comp Biochem Physiol A Mol Integr Physiol. 2011;158:438–43.

    Article  PubMed  Google Scholar 

  76. Ramaglia V, Buck LT. Time-dependent expression of heat shock proteins 70 and 90 in tissues of the anoxic western painted turtle. J Exp Biol. 2004;207:3775–84.

    Article  CAS  PubMed  Google Scholar 

  77. Nitsch H. Freediver Herbert Nitsch “The Deepest Man on Earth” 2019; 2012.

    Google Scholar 

  78. Kohshi K, et al. Neurological manifestations in Japanese Ama divers. Undersea Hyperb Med. 2005;32:11–20.

    CAS  PubMed  Google Scholar 

  79. Cialoni D, et al. Detection of venous gas emboli after repetitive breath-hold dives: case report. Undersea Hyperb Med. 2016;43:449–55.

    CAS  PubMed  Google Scholar 

  80. Shimamiya T, Terada N, Wakabayashi S, Mohri M. Effects of 30-m nitrox saturation dive on the immune system in man. Undersea Hyperb Med. 2006;33:63–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nariyoshi Shinomiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shinomiya, N. (2020). Host Response Against Hyperbaric Diving Stresses. In: Shinomiya, N., Asai, Y. (eds) Hyperbaric Oxygenation Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-13-7836-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7836-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7835-5

  • Online ISBN: 978-981-13-7836-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics