Skip to main content

Lactic Acid Bacteria and Host Immunity

  • Chapter
  • First Online:
Lactic Acid Bacteria

Abstract

The immune system is the most effective barrier for the host to defend against the invasion of external pathogens. The system consists of a series of immune organs, immune cells, and immune active substances (immune molecules), which can detect and eliminate non-autologous substances, such as foreign pathogens and foreign bodies, and its own mutant cells. Among them, immune organs include bone marrow, spleen, lymph nodes, tonsils, small intestine collecting lymph nodes, appendix, thymus, etc.; immune cells include lymphocytes, mononuclear phagocytic cells, neutrophils, basophils, eosinophils, hypertrophy cells, platelets, etc.; immune molecules include the complement, immunoglobulin, interferon, interleukin, tumor necrosis factor, etc. Different types of immune tissues, immune cells, and immune molecules have different roles, and they coordinate the functions of various parts through lymphocyte recycling and various immune molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amar Y, Rizzello V, Cavaliere R et al (2015) Divergent signaling pathways regulate IL-12 production induced by different species of lactobacilli in human dendritic cells. Immunol Lett 166(1):6–12

    Article  CAS  PubMed  Google Scholar 

  • Amati L, Marzulli G, Martulli M et al (2010) Administration of a synbiotic to free-living elderly and evaluation of serum cytokines. A pilot study. Curr Pharm Des 16(7):854–858

    Article  CAS  PubMed  Google Scholar 

  • Arunachalam K, Gill HS, Chandra RK (2000) Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis HN019. Eur J Clin Nutr 54(3):263–267

    Article  CAS  PubMed  Google Scholar 

  • Bakker-Zierikzee AM, Tol EA, Kroes H et al (2006) Faecal SIgA secretion in infants fed on pre- or probiotic infant formula. Pediatr Allergy Immunol 17(2):134–140

    Article  CAS  PubMed  Google Scholar 

  • Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369(9573):1627–1640

    Article  CAS  PubMed  Google Scholar 

  • Bleau C, Monges A, Rashidan K et al (2010) Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. J Appl Microbiol 108(2):666–675

    Article  CAS  PubMed  Google Scholar 

  • Boge T, Remigy M, Vaudaine S et al (2009) A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials. Vaccine 27(41):5677–5684

    Article  CAS  PubMed  Google Scholar 

  • Braat H, van den Brande J, van Tol E et al (2004) Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. Am J Clin Nutr 80(6):1618–1625

    Article  CAS  PubMed  Google Scholar 

  • Bron PA, van Baarlen P, Kleerebezem M (2012) Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10(1):66–78

    Article  CAS  Google Scholar 

  • Cangemi de Gutierrez RC, Santos de Araoz VS, Nader-Macias ME (2000) Effect of intranasal administration of Lactobacillus fermentum on the respiratory tract of mice. Biol Pharm Bull 23(8):973–978

    Article  CAS  PubMed  Google Scholar 

  • Castillo NA, Moreno de LeBlanc AD, Galdeano CM et al (2013) Comparative study of the protective capacity against Salmonella infection between probiotic and nonprobiotic Lactobacilli. J Appl Microbiol 114(3):861–876

    Article  CAS  PubMed  Google Scholar 

  • Chiang BL, Sheih YH, Wang LH et al (2000) Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr 54(11):849–855

    Article  CAS  PubMed  Google Scholar 

  • Christensen HR, Larsen CN, Kaestel P et al (2006) Immunomodulating potential of supplementation with probiotics: a dose-response study in healthy young adults. FEMS Immunol Med Microbiol 47(3):380–390

    Article  CAS  PubMed  Google Scholar 

  • Claes IJ, Lebeer S, Shen C et al (2010) Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin Exp Immunol 162(2):306–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross ML, Mortensen RR, Kudsk J et al (2002) Dietary intake of Lactobacillus rhamnosus HNOO1 enhances production of both Th1 and Th2 cytokines in antigen-primed mice. Med Microbiol Immunol 191(1):49–53

    Article  CAS  PubMed  Google Scholar 

  • Daniel C, Repa A, Wild C et al (2006) Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1. Allergy 61(7):812–819

    Article  CAS  PubMed  Google Scholar 

  • de Vrese M, Rautenberg P, Laue C et al (2005a) Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination. Eur J Nutr 44(7):406–413

    Article  PubMed  Google Scholar 

  • de Vrese M, Winkler P, Rautenberg P et al (2005b) Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: a double blind, randomized, controlled trial. Clin Nutr 24(4):481–491

    Article  PubMed  Google Scholar 

  • Deepika G, Charalampopoulos D (2010) Surface and adhesion properties of lactobacilli. Adv Appl Microbiol 70:127–152

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Rowland I, Tuohy KM et al (2010) Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production. Clin Exp Immunol 161(2):378–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Rowland I, Thomas LV et al (2013) Immunomodulatory effects of a probiotic drink containing Lactobacillus casei Shirota in healthy older volunteers. Eur J Nutr 52(8):1853–1863

    Article  CAS  PubMed  Google Scholar 

  • Donnet-Hughes A, Rochat F, Serrant P et al (1999) Modulation of nonspecific mechanisms of defense by lactic acid bacteria: effective dose. J Dairy Sci 82(5):863–869

    Article  CAS  PubMed  Google Scholar 

  • Elli M, Zink R, Rytz A et al (2000) Iron requirement of Lactobacillus spp. in completely chemically defined growth media. J Appl Microbiol 88(4):695–703

    Article  CAS  PubMed  Google Scholar 

  • Evrard B, Coudeyras S, Dosgilbert A et al (2011) Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35. PLoS One 6(4):e18735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang H, Elina T, Heikki A et al (2000) Modulation of humoral immune response through probiotic intake. FEMS Immunol Med Microbiol 29(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Foligne B, Zoumpopoulou G, Dewulf J et al (2007) A key role of dendritic cells in probiotic functionality. PLoS ONE 2(3):e313

    Article  PubMed  PubMed Central  Google Scholar 

  • Forchielli ML, Walker WA (2005) The role of gut-associated lymphoid tissues and mucosal defence. Br J Nutr 93(Suppl 1):S41–S48

    Article  CAS  PubMed  Google Scholar 

  • Fukushima Y, Kawata Y, Hara H et al (1998) Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int J Food Microbiol 42(1–2):39–44

    Article  CAS  PubMed  Google Scholar 

  • Fukushima Y, Miyaguchi S, Yamano T et al (2007) Improvement of nutritional status and incidence of infection in hospitalised, enterally fed elderly by feeding of fermented milk containing probiotic Lactobacillus johnsonii La1(NCC533). Br J Nutr 98(5):969–977

    Article  CAS  PubMed  Google Scholar 

  • Gad M, Ravn P, Soborg DA et al (2011) Regulation of the IL-10/IL-12 axis in human dendritic cells with probiotic bacteria. FEMS Immunol Med Microbiol 63(1):93–107

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Rutherfurd KJ (2001a) Immune enhancement conferred by oral delivery of Lactobacillus rhamnosus HN001 in different milk-based substrates. J Dairy Res 68(4):611–616

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Rutherfurd KJ (2001b) Viability and dose-response studies on the effects of the immunoenhancing lactic acid bacterium Lactobacillus rhamnosus in mice. Br J Nutr 86(2):285–289

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Darragh AJ, Cross ML (2001a) Optimizing immunity and gut function in the elderly. J Nutr Health Aging 5(2):80–91

    CAS  PubMed  Google Scholar 

  • Gill HS, Rutherfurd KJ, Cross ML et al (2001b) Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr 74(6):833–839

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Rutherfurd KJ, Cross ML (2001c) Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J Clin Immunol 21(4):264–271

    Article  CAS  PubMed  Google Scholar 

  • Grangette C, Nutten S, Palumbo E et al (2005) Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci USA 102(29):10321–10326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guencheva G, Popova P, Davidkova G et al (1992) Determination of cytokine release after in vivo and in vitro administration of Deodan (a preparation from Lactobacillus bulgaricus “LB51”) by the rabbit pyrogen test. Int J Immunopharmacol 14(8):1429–1436

    Article  CAS  PubMed  Google Scholar 

  • Haller D, Blum S, Bode C et al (2000) Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: evidence of NK cells as primary targets. Infect Immun 68(2):752–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haller D, Serrant P, Granato D et al (2002) Activation of human NK cells by staphylococci and lactobacilli requires cell contact-dependent costimulation by autologous monocytes. Clin Diagn Lab Immunol 9(3):649–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hart AL, Lammers K, Brigidi P et al (2004) Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53(11):1602–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuvelin E, Lebreton C, Grangette C et al (2009) Mechanisms involved in alleviation of intestinal inflammation by Bifidobacterium breve soluble factors. PLoS One 4(4):e5184

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoarau C, Lagaraine C, Martin L et al (2006) Supernatant of Bifidobacterium breve induces dendritic cell maturation, activation, and survival through a Toll-like receptor 2 pathway. J Allergy Clin Immunol 117(3):696–702

    Article  CAS  PubMed  Google Scholar 

  • Hur HJ, Lee KW, Lee HJ (2004) Production of nitric oxide, tumor necrosis factor-α and interleukin-6 by RAW264.7 macrophage cells treated with lactic acid bacteria isolated from kimchi. Biofactors 21(1–4):123–125

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim F, Ruvio S, Granlund L et al (2010) Probiotics and immunosenescence: cheese as a carrier. FEMS Immunol Med Microbiol 59(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Isolauri E, Joensuu J, Suomalainen H et al (1995) Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine 13(3):310–312

    Article  CAS  PubMed  Google Scholar 

  • Iyer C, Kosters A, Sethi G et al (2008) Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-κB and MAPK signalling. Cell Microbiol 10(7):1442–1452

    Article  CAS  PubMed  Google Scholar 

  • Jeon SG, Kayama H, Ueda Y et al (2012) Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS Pathog 8(5):e1002714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jijon H, Backer J, Diaz H et al (2004) DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology 126(5):1358–1373

    Article  CAS  PubMed  Google Scholar 

  • Kaila M, Isolauri E, Saxelin M et al (1995) Viable versus inactivated Lactobacillus strain GG in acute rotavirus diarrhoea. Arch Dis Child 72(1):51–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaji R, Kiyoshima-Shibata J, Nagaoka M et al (2010) Bacterial teichoic acids reverse predominant IL-12 production induced by certain lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. J Immunol 184(7):3505–3513

    Article  CAS  PubMed  Google Scholar 

  • Kano H, Kaneko T, Kaminogawa S (2002) Oral intake of Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1 prevents collagen-induced arthritis in mice. J Food Prot 65(1):153–160

    Article  PubMed  Google Scholar 

  • Kaushal D, Kansal VK (2014) Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum improves phagocytic potential of macrophages in aged mice. J Food Sci Technol 51(6):1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Park H, Cho IY et al (2006) Dietary supplementation of probiotic Bacillus polyfermenticus, Bispan strain, modulates natural killer cell and T cell subset populations and immunoglobulin G levels in human subjects. J Med Food 9(3):321–327

    Article  CAS  PubMed  Google Scholar 

  • Kirjavainen PV, El-Nezami HS, Salminen SJ et al (1999) The effect of orally administered viable probiotic and dairy lactobacilli on mouse lymphocyte proliferation. FEMS Immunol Med Microbiol 26(2):131–135

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa H, Harata T, Uemura J et al (1998) Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int J Food Microbiol 40(3):169–175

    Article  CAS  PubMed  Google Scholar 

  • Klein A, Friedrich U, Vogelsang H et al (2008) Lactobacillus acidophilus 74–2 and Bifidobacterium animalis subsp. lactis DGCC 420 modulate unspecific cellular immune response in healthy adults. Eur J Clin Nutr 62(5):584–593

    Article  CAS  PubMed  Google Scholar 

  • Ko JS, Yang HR, Chang JY et al (2007) Lactobacillus plantarum inhibits epithelial barrier dysfunction and interleukin-8 secretion induced by tumor necrosis factor-α. World J Gastroenterol 13(13):1962–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinov SR, Smidt H, de Vos WM et al (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci USA 105(49):19474–19479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotani Y, Shinkai S, Okamatsu H et al (2010) Oral intake of Lactobacillus pentosus strain b240 accelerates salivary immunoglobulin A secretion in the elderly: a randomized, placebo-controlled, double-blind trial. Immun Ageing 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Kukkonen K, Nieminen T, Poussa T et al (2006) Effect of probiotics on vaccine antibody responses in infancy--a randomized placebo-controlled double-blind trial. Pediatr Allergy Immunol 17(6):416–421

    Article  PubMed  Google Scholar 

  • Lara-Villoslada F, Sierra S, Boza J et al (2007) Beneficial effects of consumption of a dairy product containing two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus gasseri CECT5714 in healthy children. Nutr Hosp 22(4):496–502

    CAS  PubMed  Google Scholar 

  • Latvala S, Pietila TE, Veckman V et al (2008) Potentially probiotic bacteria induce efficient maturation but differential cytokine production in human monocyte-derived dendritic cells. World J Gastroenterol 14(36):5570–5583. discussion 5581–5572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeer S, Claes IJ, Verhoeven TL et al (2011) Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb Biotechnol 4(3):368–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeer S, Claes I, Tytgat HL et al (2012) Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol 78(1):185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JW, Shin JG, Kim EH et al (2004) Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J Vet Sci 5(1):41–48

    Article  PubMed  Google Scholar 

  • Link-Amster H, Rochat F, Saudan KY et al (1994) Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol Med Microbiol 10(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fatheree NY, Mangalat N et al (2010) Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 299(5):G1087–G1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhang J, Zhang S et al (2014) Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem 62(4):860–866

    Article  CAS  PubMed  Google Scholar 

  • Luongo D, Miyamoto J, Bergamo P et al (2013) Differential modulation of innate immunity in vitro by probiotic strains of Lactobacillus gasseri. BMC Microbiol 13:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Maassen CB, van Holten-Neelen C, Balk F et al (2000) Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 18(23):2613–2623

    Article  CAS  PubMed  Google Scholar 

  • Maassen CB, Boersma WJ, van Holten-Neelen C et al (2003) Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: implications for vaccine development. Vaccine 21(21–22):2751–2757

    Article  CAS  PubMed  Google Scholar 

  • Macho FE, Valenti V, Rockel C et al (2011) Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60(8):1050–1059

    Article  Google Scholar 

  • Mack DR, Ahrne S, Hyde L et al (2003) Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52(6):827–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malin M, Suomalainen H, Saxelin M et al (1996) Promotion of IgA immune response in patients with Crohn’s disease by oral bacteriotherapy with Lactobacillus GG. Ann Nutr Metab 40(3):137–145

    Article  CAS  PubMed  Google Scholar 

  • Maneerat S, Lehtinen MJ, Childs CE et al (2013) Consumption of Bifidobacterium lactis Bi-07 by healthy elderly adults enhances phagocytic activity of monocytes and granulocytes. J Nutr Sci 2:e44

    Article  PubMed  Google Scholar 

  • Marcos A, Warnberg J, Nova E et al (2004) The effect of milk fermented by yogurt cultures plus Lactobacillus casei DN-114001 on the immune response of subjects under academic examination stress. Eur J Nutr 43(6):381–389

    Article  PubMed  Google Scholar 

  • Mariman R, Tielen F, Koning F et al (2014) The probiotic mixture VSL#3 dampens LPS-induced chemokine expression in human dendritic cells by inhibition of STAT-1 phosphorylation. PLoS ONE 9(12):e115676

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin ML, Tejada-Simon MV, Lee JH et al (1998) Stimulation of cytokine production in clonal macrophage and T-cell models by Streptococcus thermophilus: comparison with Bifidobacterium sp. and Lactobacillus bulgaricus. J Food Prot 61(7):859–864

    Article  CAS  PubMed  Google Scholar 

  • Marschan E, Kuitunen M, Kukkonen K et al (2008) Probiotics in infancy induce protective immune profiles that are characteristic for chronic low-grade inflammation. Clin Exp Allergy 38(4):611–618

    Article  CAS  PubMed  Google Scholar 

  • Marteau P, Vaerman JP, Dehennin JP et al (1997) Effects of intrajejunal perfusion and chronic ingestion of Lactobacillus johnsonii strain La1 on serum concentrations and jejunal secretions of immunoglobulins and serum proteins in healthy humans. Gastroenterol Clin Biol 21(4):293–298

    CAS  PubMed  Google Scholar 

  • Martinez-Canavate A, Sierra S, Lara-Villoslada F et al (2009) A probiotic dairy product containing L. gasseri CECT5714 and L. coryniformis CECT5711 induces immunological changes in children suffering from allergy. Pediatr Allergy Immunol 20(6):592–600

    Article  PubMed  Google Scholar 

  • Mastrandrea F, Coradduzza G, Serio G et al (2004) Probiotics reduce the CD34+ hemopoietic precursor cell increased traffic in allergic subjects. Eur Ann Allergy Clin Immunol 36(4):118–122

    CAS  PubMed  Google Scholar 

  • Matsuguchi T, Takagi A, Matsuzaki T et al (2003) Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor α-inducing activities in macrophages through Toll-like receptor 2. Clin Diagn Lab Immunol 10(2):259–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto S, Hara T, Hori T et al (2005) Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol 140(3):417–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina M, Izquierdo E, Ennahar S et al (2007) Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin Exp Immunol 150(3):531–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826

    Article  CAS  PubMed  Google Scholar 

  • Menard O, Butel MJ, Gaboriau-Routhiau V et al (2008) Gnotobiotic mouse immune response induced by Bifidobacterium sp. strains isolated from infants. Appl Environ Microbiol 74(3):660–666

    Article  CAS  PubMed  Google Scholar 

  • Meyer AL, Micksche M, Herbacek I et al (2006) Daily intake of probiotic as well as conventional yogurt has a stimulating effect on cellular immunity in young healthy women. Ann Nutr Metab 50(3):282–289

    Article  CAS  PubMed  Google Scholar 

  • Miettinen M, Veckman V, Latvala S et al (2008) Live Lactobacillus rhamnosus and Streptococcus pyogenes differentially regulate Toll-like receptor (TLR) gene expression in human primary macrophages. J Leukoc Biol 84(4):1092–1100

    Article  CAS  PubMed  Google Scholar 

  • Mullie C, Yazourh A, Thibault H et al (2004) Increased poliovirus-specific intestinal antibody response coincides with promotion of Bifidobacterium longum-infantis and Bifidobacterium breve in infants: a randomized, double-blind, placebo-controlled trial. Pediatr Res 56(5):791–795

    Article  CAS  PubMed  Google Scholar 

  • Nagao F, Nakayama M, Muto T et al (2000a) Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the immune system in healthy human subjects. Biosci Biotechnol Biochem 64(12):2706–2708

    Article  CAS  PubMed  Google Scholar 

  • Nagao M, Nakajima Y, Kanehiro H et al (2000b) The impact of interferon gamma receptor expression on the mechanism of escape from host immune surveillance in hepatocellular carcinoma. Hepatology 32(3):491–500

    Article  CAS  PubMed  Google Scholar 

  • Naidu AS, Bidlack WR, Clemens RA (1999) Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 39(1):13–126

    Article  CAS  PubMed  Google Scholar 

  • Niers LE, Timmerman HM, Rijkers GT et al (2005) Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clin Exp Allergy 35(11):1481–1489

    Article  CAS  PubMed  Google Scholar 

  • O’Mahony L, O’Callaghan L, McCarthy J et al (2006) Differential cytokine response from dendritic cells to commensal and pathogenic bacteria in different lymphoid compartments in humans. Am J Physiol Gastrointest Liver Physiol 290(4):G839–G845

    Article  PubMed  Google Scholar 

  • O’Mahony C, Scully P, O’Mahony D et al (2008) Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-κB activation. PLoS Pathog 4(8):e1000112

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogawa T, Asai Y, Tamai R et al (2006) Natural killer cell activities of synbiotic Lactobacillus casei ssp. casei in conjunction with dextran. Clin Exp Immunol 143(1):103–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva S, di Nardo G, Ferrari F et al (2012) Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment Pharmacol Ther 35(3):327–334

    Article  CAS  PubMed  Google Scholar 

  • Olivares M, Diaz-Ropero MP, Gomez N et al (2006a) The consumption of two new probiotic strains, Lactobacillus gasseri CECT 5714 and Lactobacillus coryniformis CECT 5711, boosts the immune system of healthy humans. Int Microbiol 9(1):47–52

    CAS  PubMed  Google Scholar 

  • Olivares M, Paz DM, Gomez N et al (2006b) Dietary deprivation of fermented foods causes a fall in innate immune response. Lactic acid bacteria can counteract the immunological effect of this deprivation. J Dairy Res 73(4):492–498

    Article  CAS  PubMed  Google Scholar 

  • Olivares M, Diaz-Ropero MP, Sierra S et al (2007) Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition 23(3):254–260

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Andrellucchi A, Sanchez-Villegas A, Rodriguez-Gallego C et al (2008) Immunomodulatory effects of the intake of fermented milk with Lactobacillus casei DN114001 in lactating mothers and their children. Br J Nutr 100(4):834–845

    Article  CAS  PubMed  Google Scholar 

  • Ouwehand AC, Bergsma N, Parhiala R et al (2008) Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunol Med Microbiol 53(1):18–25

    Article  CAS  PubMed  Google Scholar 

  • Ouwehand AC, Tiihonen K, Saarinen M et al (2009) Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters. Br J Nutr 101(3):367–375

    Article  CAS  PubMed  Google Scholar 

  • Paineau D, Carcano D, Leyer G et al (2008) Effects of seven potential probiotic strains on specific immune responses in healthy adults: a double-blind, randomized, controlled trial. FEMS Immunol Med Microbiol 53(1):107–113

    Article  CAS  PubMed  Google Scholar 

  • Parra D, de Morentin BM, Cobo JM et al (2004) Monocyte function in healthy middle-aged people receiving fermented milk containing Lactobacillus casei. J Nutr Health Aging 8(4):208–211

    CAS  PubMed  Google Scholar 

  • Pelto L, Isolauri E, Lilius EM et al (1998) Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clin Exp Allergy 28(12):1474–1479

    Article  CAS  PubMed  Google Scholar 

  • Pena JA, Versalovic J (2003) Lactobacillus rhamnosus GG decreases TNF-α production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. Cell Microbiol 5(4):277–285

    Article  CAS  PubMed  Google Scholar 

  • Perdigon G, Alvarez S, Rachid M et al (1995) Immune system stimulation by probiotics. J Dairy Sci 78(7):1597–1606

    Article  CAS  PubMed  Google Scholar 

  • Perdigon G, Maldonado GC, Valdez JC et al (2002) Interaction of lactic acid bacteria with the gut immune system. Eur J Clin Nutr 56(Suppl 4):S21–S26

    Article  CAS  PubMed  Google Scholar 

  • Perez N, Iannicelli JC, Girard-Bosch C et al (2010) Effect of probiotic supplementation on immunoglobulins, isoagglutinins and antibody response in children of low socio-economic status. Eur J Nutr 49(3):173–179

    Article  PubMed  Google Scholar 

  • Phuapradit P, Varavithya W, Vathanophas K et al (1999) Reduction of rotavirus infection in children receiving bifidobacteria-supplemented formula. J Med Assoc Thai 82(Suppl 1):S43–S48

    PubMed  Google Scholar 

  • Piirainen L, Haahtela S, Helin T et al (2008) Effect of Lactobacillus rhamnosus GG on rBet v1 and rMal d1 specific IgA in the saliva of patients with birch pollen allergy. Ann Allergy Asthma Immunol 100(4):338–342

    Article  CAS  PubMed  Google Scholar 

  • Popova P, Guencheva G, Davidkova G et al (1993) Stimulating effect of DEODAN (an oral preparation from Lactobacillus bulgaricus “LB51”) on monocytes/macrophages and host resistance to experimental infections. Int J Immunopharmacol 15(1):25–37

    Article  CAS  PubMed  Google Scholar 

  • Prescott SL, Wickens K, Westcott L et al (2008) Supplementation with Lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon-gamma and breast milk transforming growth factor-β and immunoglobulin A detection. Clin Exp Allergy 38(10):1606–1614

    Article  CAS  PubMed  Google Scholar 

  • Prokop’Ev AA, Kalinina NM, Andreev SV et al (1987) Peptidoglycan isolated from Lactobacillus bulgaricus: its effect, mediated by the complement system, on pre-T-cell maturation. Biull Eksp Biol Med 104(10):492–494

    PubMed  Google Scholar 

  • Remus DM, Bongers RS, Meijerink M et al (2013) Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J Bacteriol 195(3):502–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roessler A, Friedrich U, Vogelsang H et al (2008) The immune system in healthy adults and patients with atopic dermatitis seems to be affected differently by a probiotic intervention. Clin Exp Allergy 38(1):93–102

    CAS  PubMed  Google Scholar 

  • Roselli M, Finamore A, Britti MS et al (2007) The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J Nutr 137(12):2709

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeldt V, Benfeldt E, Nielsen SD et al (2003) Effect of probiotic Lactobacillus strains in children with atopic dermatitis. J Allergy Clin Immunol 111(2):389–395

    Article  PubMed  Google Scholar 

  • Ruiz PA, Hoffmann M, Szcesny S et al (2005) Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats. Immunology 115(4):441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saliganti V, Kapila R, Sharma R et al (2015) Feeding probiotic Lactobacillus rhamnosus (MTCC 5897) fermented milk to suckling mothers alleviates ovalbumin-induced allergic sensitisation in mice offspring. Br J Nutr 114(8):1168–1179

    Article  CAS  PubMed  Google Scholar 

  • Schiffrin EJ, Rochat F, Link-Amster H et al (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J Dairy Sci 78(3):491–497

    Article  CAS  PubMed  Google Scholar 

  • Schiffrin EJ, Brassart D, Servin AL et al (1997) Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr 66(2):515S–520S

    Article  CAS  PubMed  Google Scholar 

  • Schlee M, Harder J, Koten B et al (2008) Probiotic lactobacilli and VSL#3 induce enterocyte β-defensin 2. Clin Exp Immunol 151(3):528–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz M, Linde HJ, Lehn N et al (2003) Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers. J Dairy Res 70(2):165–173

    Article  CAS  PubMed  Google Scholar 

  • Seth A, Yan F, Polk DB et al (2008) Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 294(4):G1060–G1069

    Article  CAS  PubMed  Google Scholar 

  • Sheih YH, Chiang BL, Wang LH et al (2001) Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. J Am Coll Nutr 20(2 Suppl):149–156

    Article  CAS  PubMed  Google Scholar 

  • Sherman PM, Johnson-Henry KC, Yeung HP et al (2005) Probiotics reduce enterohemorrhagic Escherichia coli O157: H7- and enteropathogenic E. coli O127: H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect Immun 73(8):5183–5188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shida K, Takahashi R, Iwadate E et al (2002) Lactobacillus casei strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allergy model. Clin Exp Allergy 32(4):563–570

    Article  CAS  PubMed  Google Scholar 

  • Shida K, Kiyoshima-Shibata J, Nagaoka M et al (2006) Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. J Dairy Sci 89(9):3306–3317

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Sato H, Suga Y et al (2014) The effects of Lactobacillus pentosus strain b240 and appropriate physical training on salivary secretory IgA levels in elderly adults with low physical fitness: a randomized, double-blind, placebo-controlled trial. J Clin Biochem Nutr 54(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • Sierra S, Lara-Villoslada F, Sempere L et al (2010) Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe 16(3):195–200

    Article  PubMed  Google Scholar 

  • Smits HH, Engering A, van der Kleij D et al (2005) Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 115(6):1260–1267

    Article  CAS  PubMed  Google Scholar 

  • Soh SE, Ong DQ, Gerez I et al (2010) Effect of probiotic supplementation in the first 6 months of life on specific antibody responses to infant hepatitis B vaccination. Vaccine 28(14):2577–2579

    Article  CAS  PubMed  Google Scholar 

  • Spanhaak S, Havenaar R, Schaafsma G (1998) The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur J Clin Nutr 52(12):899–907

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Okumura K (2007) Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the human NK-cell activity. J Nutr 137(3 Suppl 2):791S–793S

    Article  CAS  PubMed  Google Scholar 

  • Taylor AL, Hale J, Wiltschut J et al (2006a) Effects of probiotic supplementation for the first 6 months of life on allergen- and vaccine-specific immune responses. Clin Exp Allergy 36(10):1227–1235

    Article  CAS  PubMed  Google Scholar 

  • Taylor A, Hale J, Wiltschut J et al (2006b) Evaluation of the effects of probiotic supplementation from the neonatal period on innate immune development in infancy. Clin Exp Allergy 36(10):1218–1226

    Article  CAS  PubMed  Google Scholar 

  • Tien MT, Girardin SE, Regnault B et al (2006) Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol 176(2):1228–1237

    Article  CAS  PubMed  Google Scholar 

  • Travassos LH, Girardin SE, Philpott DJ et al (2004) Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep 5(10):1000–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veckman V, Miettinen M, Matikainen S et al (2003) Lactobacilli and streptococci induce inflammatory chemokine production in human macrophages that stimulates Th1 cell chemotaxis. J Leukoc Biol 74(3):395–402

    Article  CAS  PubMed  Google Scholar 

  • Veckman V, Miettinen M, Pirhonen J et al (2004) Streptococcus pyogenes and Lactobacillus rhamnosus differentially induce maturation and production of Th1-type cytokines and chemokines in human monocyte-derived dendritic cells. J Leukoc Biol 75(5):764–771

    Article  CAS  PubMed  Google Scholar 

  • Verbeek R, Bsibsi M, Plomp A et al (2010) Late rather than early responses of human dendritic cells highlight selective induction of cytokines, chemokines and growth factors by probiotic bacteria. Benef Microbes 1(2):109–119

    Article  CAS  PubMed  Google Scholar 

  • Villena J, Chiba E, Vizoso-Pinto MG et al (2014) Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells. BMC Microbiol 14:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinderola G, Matar C, Perdigon G (2005) Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: involvement of toll-like receptors. Clin Diagn Lab Immunol 12(9):1075–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinderola G, Perdigon G, Duarte J et al (2006) Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36(5–6):254–260

    Article  CAS  PubMed  Google Scholar 

  • Vissers YM, Snel J, Zuurendonk PF et al (2011) Lactobacillus strains differentially modulate cytokine production by hPBMC from pollen-allergic patients. FEMS Immunol Med Microbiol 61(1):28–40

    Article  CAS  PubMed  Google Scholar 

  • Vlasova AN, Chattha KS, Kandasamy S et al (2013) Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. PLoS ONE 8(10):e76962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volz T, Nega M, Buschmann J et al (2010) Natural Staphylococcus aureus-derived peptidoglycan fragments activate NOD2 and act as potent costimulators of the innate immune system exclusively in the presence of TLR signals. FASEB J 24(10):4089–4102

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang F, Liu C et al (2012) Dietary supplementation with the probiotic Lactobacillus fermentum I5007 and the antibiotic aureomycin differentially affects the small intestinal proteomes of weanling piglets. Journal of Nutrition 142(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • West CE, Gothefors L, Granstrom M et al (2008) Effects of feeding probiotics during weaning on infections and antibody responses to diphtheria, tetanus and Hib vaccines. Pediatr Allergy Immunol 19(1):53–60

    Article  PubMed  Google Scholar 

  • Winkler P, de Vrese M, Laue C et al (2005) Effect of a dietary supplement containing probiotic bacteria plus vitamins and minerals on common cold infections and cellular immune parameters. Int J Clin Pharmacol Ther 43(7):318–326

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi DT, Ma D (2003) Mechanism of pH regulation of connexin 43 expression in MC3T3-E1 cells. Biochem Biophys Res Commun 304(4):736–739

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Cao H, Cover TL et al (2011) Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J Clin Invest 121(6):2242–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda E, Serata M, Sako T (2008) Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl Environ Microbiol 74(15):4746–4755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young SL, Simon MA, Baird MA et al (2004) Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood. Clin Diagn Lab Immunol 11(4):686–690

    PubMed  PubMed Central  Google Scholar 

  • Yu HF, Wang AN, Li XJ et al (2008) Effect of viable Lactobacillus fermentum on the growth performance, nutrient digestibility and immunity of weaned pigs. J Anim Feed Sci 17(1):61–69

    Article  Google Scholar 

  • Zeuthen LH, Fink LN, Frokiaer H (2008) Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology 124(4):489–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., He, Z., Tian, P., Wang, G. (2019). Lactic Acid Bacteria and Host Immunity. In: Chen, W. (eds) Lactic Acid Bacteria. Springer, Singapore. https://doi.org/10.1007/978-981-13-7832-4_9

Download citation

Publish with us

Policies and ethics