Skip to main content

Genetic Operation System of Lactic Acid Bacteria and Its Applications

  • Chapter
  • First Online:
Book cover Lactic Acid Bacteria
  • 1188 Accesses

  • The original version of the chapter has been revised: Page 62, Line 22–23 was published with some errors which has been corrected now. A correction to this chapter can be found at https://doi.org/10.1007/978-981-13-7832-4_12

Abstract

Lactic acid bacteria (LAB), a class of commonly existing microorganisms in nature, are important components of gut commensal microflora in humans and animals. Previous studies suggested that LAB exerted specific physiological and biochemical functions on the host such as improving intestinal microbial balance, immunomodulation, inhibiting tumor growth, lowering cholesterol levels, as well as regulating blood pressure and are therefore widely used in food manufacturing and functional food development. Due to the continuous development of modern molecular biology techniques, studies regarding exploiting LAB as expression hosts in addition to fermentation starter cultures and probiotics have received increasing attention from both academia and industry. In the 1980s, some researchers initiated molecular genetic research for LAB. They characterized lactose metabolism-related genes and proteins in LAB and established preliminary DNA delivery systems for LAB. Over the past decades, owing to the advances in modern DNA sequencing and gene characterization techniques, structures and functions of LAB genomes and plasmid-related genes have been further elucidated, which lays a solid theoretical foundation for the further development of LAB-based gene expression systems (Bolotin et al. 2001; Altermann et al. 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 06 October 2022

    The original version of the book was inadvertently published with errors. The following corrections have been made after the original publication.

References

  • Adel-Patient K, Ah-Leung S, Creminon C et al (2005) Oral administration of recombinant Lactococcus lactis expressing bovine β-lactoglobulin partially prevents mice from sensitization. Clin Exp Allergy 35(4):539–546

    Article  CAS  PubMed  Google Scholar 

  • Ai CQ, Zhang QX et al (2015) Protective effect of Streptococcus thermophilus CCFM218 against house dust mite allergy in a mouse model. Food Control 50:283–290

    Article  CAS  Google Scholar 

  • Allison GE, Klaenhammer TR (1996) Functional analysis of the gene encoding immunity to lactacin F, laf I, and its use as a Lactobacillus-specific food-grade genetic marker. Appl Environ Microbiol 62:4450–4460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altermann EWM, Russell MA, Azcarate-Peril R et al (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102(11):3906–3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atiles MW, Dudley EG, Steele JL (2000) Gene cloning, sequencing, and inactivation of the branched-chain aminotransferase of Lactococcus lactis LM0230. Appl Environ Microbiol 66(6):2325–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahey-El-Din M (2012) Lactococcus lactis-based vaccines from laboratory bench to human use: an overview. Vaccine 30(4):685–690

    Article  CAS  PubMed  Google Scholar 

  • Benbouziane B, Ribelles P (2013) Development of a stress-inducible controlled expression SICE system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. J Biotechnol 1682:120–129

    Article  Google Scholar 

  • Beninati C, Oggioni MR, Boccanera M et al (2000) Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nat Biotechnol 18(10):1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Humaran LG, Langella P (2002) Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 682:917–922

    Article  Google Scholar 

  • Bermudez-Humaran LG, Cortes-Perez NG, Le Loir Y et al (2003a) Fusion to a carrier protein and a synthetic propeptide enhances E7 HPV-16 production and secretion in Lactococcus lactis. Biotechnol Prog 19(3):1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Humaran LG, Langella P, Commissaire J et al (2003b) Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol Lett 224(2):307–313

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez-Humarán LG, Kharrat P, Chatel JM et al (2011) Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Factories 10(1):1–10

    Google Scholar 

  • Bernaudat F, Frelet-Barrand A (2011) Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 612:e29191

    Article  Google Scholar 

  • Bhowmik T, Steele JL (1993) Development of an electroporation procedure for gene disruption in Lactobacillus helveticus CNRZ 32. J Gen Microbiol 139(7):1433–1439

    Article  CAS  Google Scholar 

  • Biswas I, Gruss A, Ehrlich SD et al (1993) High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175(11):3628–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boels IC, Van Kranenburg R, Kanning MW et al (2003) Increased exopoly- saccharide production in Lactococcus lactis due to increased levels of expression of the NIZO B40 eps gene cluster. Appl Environ Microbiol 69(8):5029–5031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohle B (2006) T-cell epitopes of food allergens. Clin Rev Allergy Immunol 30(2):97–108

    Article  CAS  PubMed  Google Scholar 

  • Bolotin A, Wincker P, Mauger S (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11(5):731–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braat H, Rottiers P, Hommes DW et al (2006) A Phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4(6):754–759

    Article  CAS  PubMed  Google Scholar 

  • Bron PA, Benchimol MG (2002) Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl Environ Microbiol 6811:5663–5670

    Article  Google Scholar 

  • Carroll IM, Andrus JM, Bruno-Bárcena JM et al (2007) Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 293(4):G729–G738

    Article  CAS  PubMed  Google Scholar 

  • Charng YC, Lin CC, Hsu CH (2006) Inhibition of allergen-induced airway inflammation and hyperreactivity by recombinant lactic-acid bacteria. Vaccine 24(33–34):5931–5936

    Article  CAS  PubMed  Google Scholar 

  • Chassy BM, Flickinger JL (1987) Transformation of Lactobacillus casei by electroporation. FEMS Microbiol Lett 44(2):173–177

    Article  CAS  Google Scholar 

  • Chassy BM, Gibson EV, Giuffrida AL (1976) Evidence for extrachromosomal elements in Lactobacillus. J Bacteriol 127(3):1576–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheun HI, Kawamoto K, Hiramatsu M et al (2004) Protective immunity of SpaA-antigen producing Lactococcus lactis against Erysipelothrix rhusiopathiae infection. J Appl Microbiol 96(6):1347–1353

    Article  CAS  PubMed  Google Scholar 

  • Cortes-Perez NG, Ah-Leung S (2007) Intranasal coadministration of live lactococci producing interleukin-12 and a major cow’s milk allergen inhibits allergic reaction in mice. Clin Vaccine Immunol 143:226–233

    Google Scholar 

  • Cortes-Perez NG, Lefèvre F, Corthier G et al (2007) Influence of the route of immunization and the nature of the bacterial vector on immunogenicity of mucosal vaccines based on lactic acid bacteria. Vaccine 25(36):6581–6588

    Article  CAS  PubMed  Google Scholar 

  • Corthesy B, Boris S, Isler P et al (2005) Oral immunization of mice with lactic acid bacteria producing Helicobacter pylori Urease B subunit partially protects against challenge with Helicobacter felis. J Infect Dis 192(8):1441–1449

    Article  CAS  PubMed  Google Scholar 

  • de Azevedo M, Karczewski J (2012) In vitro and in vivo characterization of DNA delivery using recombinant Lactococcus lactis expressing a mutated form of Listeria monocytogenes Internalin A. BMC Microbiol 12:299

    Article  PubMed  PubMed Central  Google Scholar 

  • de Ruyter PG, Kuipers OP (1996) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 6210:3662–3667

    Article  Google Scholar 

  • Drouault S, Juste C, Marteau P et al (2002) Oral treatment with Lactococcus lactis expressing Staphylococcus hyicus lipase enhances lipid digestion in pigs with induced pancreatic insufficiency. Appl Environ Microbiol 68(6):3166–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton TJ, Shearman CA, Gasson MJ (1993) The use of bacterial luciferase genes as reporter genes in Lactococcus: regulation of the Lactococcus lactis subsp. lactis lactose genes. J Gen Microbiol 139:1495–1501

    Article  CAS  PubMed  Google Scholar 

  • Emond E, Lavallée R, Drolet G, Moineau S, LaPointe G (2001) Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis. Appl Environ Microbiol 67(4):1700–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enouf V, Langella P, Commissaire J et al (2001) Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67(4):1423–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferain T, Hobbs JN Jr et al (1996) Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. J Bacteriol 178(18):5431–5437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foligne B, Dessein R, Marceau M et al (2007) Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein. Gastroenterology 133(3):862–874

    Google Scholar 

  • Fortina MG, Parini C, Rossi P et al (1993) Mapping of three plasmids from Lactobacillus helveticus ATCC 15009. Lett Appl Microbiol 17(6):303–306

    Article  CAS  PubMed  Google Scholar 

  • Frossard CP, Steidler L, Eigenmann PA (2007) Oral administration of an IL-10–secreting Lactococcus lactis strain prevents food-induced IgE sensitization. J Allergy Clin Immunol 119(4):952–959

    Article  CAS  PubMed  Google Scholar 

  • García-Mantrana I, Yebra MJ, Haros M et al (2016) Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread. Int J Food Microbiol 216:18

    Article  PubMed  Google Scholar 

  • Goh YJ, Azcarate-Peril MA (2009) Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 7510:3093–3105

    Article  Google Scholar 

  • Grangette C, Muller-Alouf H (2001) Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant Lactobacillus plantarum. Infect Immun 693:1547–1553

    Article  Google Scholar 

  • Hanniffy SB, Carter AT, Hitchin E et al (2007) Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J Infect Dis 195(2):185–193

    Article  CAS  PubMed  Google Scholar 

  • Ho PS, Kwang J, Lee YK (2005) Intragastric administration of Lactobacillus casei expressing transmissible gastroentritis coronavirus spike glycoprotein induced specific antibody production. Vaccine 23(11):1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Hols P, Kleerebezem M (1999) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol 176:588–592

    Article  Google Scholar 

  • Hongying F, Xianbo W, Fang Y et al (2014) Oral Immunization with recombinant Lactobacillus acidophilus expressing the adhesin Hp0410 of Helicobacter pylori induces mucosal and systemic immune responses. Clin Vaccine Immunol 21(2):126–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu S, Kong J, Kong W, Guo T et al (2010) Characterization of a novel LysM domain from Lactobacillus fermentum bacteriophage endolysin and its use as an anchor to display heterologous proteins on the surfaces of lactic acid bacteria. Appl Environ Microbiol 76(8):2410–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz J, Kleerebezem M (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 669:4112–4114

    Article  Google Scholar 

  • Hughes BF, Mc Kay LL (1992) Deriving phage-insensitive Lactococci using a food-grade vector encoding phage and nisin resistance. J Dairy Sci 75:914–923

    Article  Google Scholar 

  • Huibregtse IL, Snoeck V, de Creus A et al (2007) Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin. Gastroenterology 133(2):517–528

    Article  CAS  PubMed  Google Scholar 

  • Jimenez JJ, Diep DB, Borrero J et al (2015) Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475. Microb Cell Fact 14:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Q, Li L (2014) Construction of a dextran-free Leuconostoc citreum mutant by targeted disruption of the dextransucrase gene. J Appl Microbiol 1174:1104–1112

    Article  Google Scholar 

  • Kahala M, Palva A (1999) The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria. Appl Microbiol Biotechnol 51(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Kajava AV, Zolov SN, Kalinin AE et al (2000) The net charge of the first 18 residues of the mature sequence affects protein translocation across the cytoplasmic membrane of gram-negative bacteria. J Bacteriol 182(8):2163–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandaswamy K, Liew TH, Wang CY et al (2013) Focal targeting by human beta-defensin 2 disrupts localized virulence factor assembly sites in Enterococcus faecalis. Proc Natl Acad Sci U S A 110(50):20230–20235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanpiengjai A, Lumyong S, Wongputtisin P et al (2015) Efficient secretory expression of gene encoding a broad pH-stable maltose-forming amylase from Lactobacillus plantarum S21 in food-grade lactobacilli host. J Korean Soc Appl Biol Chem 58(6):901–908

    Article  CAS  Google Scholar 

  • Kleerebezem M, Beerthuyzen MM, Vaughan EE et al (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63(11):4581–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuczkowska K, Mathiesen G, Eijsink VG et al (2015) Lactobacillus plantarum displaying CCL3 chemokine in fusion with HIV-1 Gag derived antigen causes increased recruitment of T cells. Microb Cell Factories 14(1):1

    Article  Google Scholar 

  • Lambert JM, Bongers RS (2007) Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol 734:1126–1135

    Article  Google Scholar 

  • Langa S, Arqués JL (2015) Glycerol and cobalamin metabolism in lactobacilli: relevance of the propanediol dehydrogenase pdh30. Eur Food Res Technol 2412:173–184

    Article  Google Scholar 

  • Le Loir Y, Nouaille S, Commissaire J et al (2001) Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67(9):4119–4127

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Loir Y, Azevedo V, Oliveira SC et al (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Factories 4(1):2

    Article  Google Scholar 

  • LeBlanc JG, del Carmen S, Miyoshi A et al (2011) Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. J Biotechnol 151(3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Roussel Y, Wilks M et al (2001) Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H-pylori infection in mice. Vaccine 19(28–29):3927–3935

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Poo H, Han DP et al (2005) Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J Virol 80(8):4079–4087

    Article  Google Scholar 

  • Lee P, Abdul-Wahid A, Faubert GM (2009) Comparison of the local immune response against Giardia lamblia cyst wall protein 2 induced by recombinant Lactococcus lactis and Streptococcus gordonii. Microbes Infect 11(1):20–28

    Article  CAS  PubMed  Google Scholar 

  • Leenhouts K, Bolhuis A (1998) Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl Microbiol Biotechnol 494:417–423

    Article  Google Scholar 

  • Lei H, Sheng Z, Ding Q et al (2011) Evaluation of oral immunization with recombinant avian influenza virus HA1 displayed on the Lactococcus lactis surface and combined with the mucosal adjuvant cholera toxin subunit B. Clin Vaccine Immunol 18(7):1046–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levander F, Svensson M (2002) Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl Environ Microbiol 682:784–790

    Article  Google Scholar 

  • Limaye SA, Haddad RI, Cilli F et al (2013) Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119(24):4268–4276

    Article  CAS  PubMed  Google Scholar 

  • Lin XB, Lohans CT (2015) Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri. Appl Environ Microbiol 816:2032–2041

    Article  Google Scholar 

  • Liu B, Xu H (2015) CRISPR/Cas: a faster and more efficient gene editing system. J Nanosci Nanotechnol 153:1946–1959

    Article  Google Scholar 

  • Liu CQ, Leelawatcharamas V, Harvey ML et al (1996) Cloning vectors for lactococcus based on a plasmid encoding resistance to cadmium. Curr Microbiol 33:35–39

    Article  CAS  PubMed  Google Scholar 

  • Liu DQ, Qiao XY, Ge JW et al (2011) Construction and characterization of Lactobacillus pentosus expressing the D antigenic site of the spike protein of transmissible gastroenteritis virus. Can J Microbiol 57(5):392–397

    Article  CAS  Google Scholar 

  • Llull D, Poquet I (2004) New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl Environ Microbiol 70(9):5398–5406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lokman BC, Santen PV, Verdoes JC et al (1991) Organization and characterization of three genes involved in d -xylose catabolism in Lactobacillus pentosus. Mol Gen Genomics 230(1):161–169

    Article  CAS  Google Scholar 

  • Maassen CB, Laman JD, den Bak-Glashouwer MJ et al (1999) Instruments for oral disease-intervention strategies: recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis. Vaccine 17(17):2117–2128

    Article  CAS  PubMed  Google Scholar 

  • Madsen SM, Arnau J, Vrang A et al (1999) Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol Microbiol 32(1):75–87

    Google Scholar 

  • Maguin E, Duwat P, Hege T et al (1992) New thermosensitive plasmid for gram-positive bacteria. J Bacteriol 174(17):5633–5638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud KT, Sameh EM (2011) Heterologous expression of pctA gene expressing propionicin T1 by some lactic acid bacterial strains using pINT125. Alexandria University, Netherlands

    Google Scholar 

  • Mannam P, Jones KF, Geller BL (2004) Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes. Infect Immun 72(6):3444–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay LL, Baldwin KA (1990) Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol Rev 7(1–2):3–14

    Article  CAS  PubMed  Google Scholar 

  • Meazza R, Gaggero A, Neglia F et al (1997) Expression of two interleukin-15 mRNA isoforms in human tumors does not correlate with secretion: role of different signal peptides. Eur J Immunol 27(5):1049–1054

    Article  CAS  PubMed  Google Scholar 

  • Meijerink M, Wells JM, Taverne N et al (2012) Immunomodulatory effects of potential probiotics in a mouse peanut sensitization model. FEMS Immunol Med Microbiol 65(3):488–496

    Article  CAS  PubMed  Google Scholar 

  • Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180(8):2063–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narita J, Okano K, Kitao T et al (2006) Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol 72(1):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauta A, van den Burg B, Karsens H et al (1997) Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling. Nat Biotechnol 15(10):980–983

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HA, Nguyen TH (2012a) Chitinase from Bacillus licheniformis DSM13: expression in Lactobacillus plantarum WCFS1 and biochemical characterisation. Protein Expr Purif 812:166–174

    Article  Google Scholar 

  • Nguyen TT, Nguyen HA (2012b) Homodimeric beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization. J Agric Food Chem 607:1713–1721

    Article  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S et al (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Norton PM, Wells JM, Brown HW et al (1997) Protection against tetanus toxin in mice nasally immunized with recombinant Lactococcus lactis expressing tetanus toxin fragment C. Vaccine 15(6–7):616–619

    Article  CAS  PubMed  Google Scholar 

  • Oh JH, van Pijkeren JP (2014) CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 4217:e131

    Google Scholar 

  • Oliveira MLS, Areas APM, Campos IB et al (2006) Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A. Microbes Infect 8(4):1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne J, MacCormick CA (1996) Exploitation of a chromosomally integrated lactose operon for controlled gene expression in Lactococcus lactis. FEMS Microbiol Lett 1361:19–24

    Article  Google Scholar 

  • Perez CA, Eichwald C, Burrone O et al (2005) Rotavirus vp7 antigen produced by Lactococcus lactis induces neutralizing antibodies in mice. J Appl Microbiol 99(5):1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Petersen KV, Martinussen J (2013) Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA. Appl Environ Microbiol 7912:3563–3569

    Article  Google Scholar 

  • Platteeuw C, Hugenholtz J (1995) Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl Environ Microbiol 6111:3967–3971

    Article  Google Scholar 

  • Platteeuw C, van Alen-Boerrigter I et al (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol 623:1008–1013

    Article  Google Scholar 

  • Poo H, Pyo HM, Lee TY et al (2006) Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int J Cancer 119(7):1702–1709

    Article  CAS  PubMed  Google Scholar 

  • Posno M, Heuvelmans PT (1991) Complementation of the inability of lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl Environ Microbiol 579:2764–2766

    Article  Google Scholar 

  • Ramasamy R, Yasawardena S, Zomer A et al (2006) Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine 24(18):3900–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravnikar M, Štrukelj B, Obermajer N et al (2010) Engineered lactic acid bacterium Lactococcus lactis capable of binding antibodies and tumor necrosis factor alpha. Appl Environ Microbiol 76(20):6928–6932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remus DM, Kranenburg R (2012) Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling. Microb Cell Factories 111:149

    Article  Google Scholar 

  • Ribeiro LA, Azevedo V, Le Loir Y et al (2002) Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68(2):910–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigaux P, Daniel C, Isbergues M et al (2009) Immunomodulatory properties of Lactobacillus plantarum and its use as a recombinant vaccine against mite allergy. Allergy 64(3):406–414

    Article  CAS  PubMed  Google Scholar 

  • Robinson K, Chamberlain LM, Schofield KM et al (1997) Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol 15(7):653–657

    Article  CAS  PubMed  Google Scholar 

  • Robinson K, Chamberlain LM, Lopez MC et al (2004) Mucosal and cellular immune responses elicited by recombinant Lactococcus lactis strains expressing tetanus toxin fragment C. Infect Immun 72(5):2753–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochat T, Bermúdez-Humarán L, Gratadoux JJ et al (2007) Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice. Microb Cell Factories 6(1):1–10

    Article  Google Scholar 

  • Rolain T, Bernard E (2012) Identification of key peptidoglycan hydrolases for morphogenesis, autolysis, and peptidoglycan composition of Lactobacillus plantarum WCFS1. Microb Cell Factories 111:137

    Article  Google Scholar 

  • Ross P, O’Gara F (1990) Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes. Appl Environ Microbiol 567:2164–2169

    Article  Google Scholar 

  • Scheppler L, Vogel M, Zuercher AW et al (2002) Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle. Vaccine 20(23–24):2913–2920

    Article  CAS  PubMed  Google Scholar 

  • Scheppler L, Vogel M, Marti P et al (2005) Intranasal immunisation using recombinant Lactobacillus johnsonii as a new strategy to prevent allergic disease. Vaccine 23(9):1126–1134

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer M, Repa A, Daniel C et al (2011) Neonatal colonization of mice with Lactobacillus plantarum producing the aeroallergen Bet v 1 biases towards Th1 and T-regulatory responses upon systemic sensitization. Allergy 66(3):368–375

    Article  CAS  PubMed  Google Scholar 

  • Sibakov M, Koivula T, von Wright A, Palva I (1991) Secretion of TEM beta-lactamase with signal sequence isolated from the chromosome of Lactococcus lactis subsp. lactis. Appl Environ Microbiol 57(2):341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smiley MB, Fryder V (1978) Plasmids, lactic acid production, and N-acetyl-D-glucosamine fermentation in Lactobacillus helveticus subsp. Appl Environ Microbiol 35(4):777–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Google Scholar 

  • Solem C, Defoor E (2008) Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis. Appl Environ Microbiol 7415:4772–4775

    Article  Google Scholar 

  • Song L, Cui H (2014) Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid. J Microbiol Methods 102:37–44

    Article  CAS  PubMed  Google Scholar 

  • Sorensen KI, Larsen R (2000) A food-grade cloning system for industrial strains of Lactococcus lactis. Appl Environ Microbiol 664:1253–1258

    Article  Google Scholar 

  • Sorvig E, Gronqvist S (2003) Construction of vectors for inducible gene expression in Lactobacillus sakei and L plantarum. FEMS Microbiol Lett 2291:119–126

    Article  Google Scholar 

  • Sorvig E, Mathiesen G (2005) High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology 151(Pt 7):2439–2449

    Article  CAS  PubMed  Google Scholar 

  • Steidler L, Hans W (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2895483:1352–1355

    Article  Google Scholar 

  • Svensson M, Waak E, Svensson U et al (2005) Metabolically improved exopoly- saccharide production by Streptococcus thermophilus and its influence on the rheological properties of fermented milk. Appl Environ Microbiol 71(10):6398–6400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takala TM, Saris PE (2002) A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl Microbiol Biotechnol 594–5:467–471

    Google Scholar 

  • van Asseldonk M, Rutten G, Oteman M et al (1990) Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95(1):155–160

    Article  PubMed  Google Scholar 

  • van Pijkeren JP, Britton RA (2012) High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res 4010:e76

    Article  Google Scholar 

  • Vandenbroucke K, Hans W, Van Huysse J et al (2004) Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127(2):502–513

    Article  CAS  PubMed  Google Scholar 

  • Vandenbroucke K, de Haard H, Beirnaert E et al (2009) Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 3(1):49–56

    Article  PubMed  Google Scholar 

  • Vescovo M, Bottazzi V, Sarra PG et al (1981) Evidence of plasmid deoxyribonucleic acid in Lactobacillus. Microbiologica (Bologna) 4(4):413–419

    CAS  Google Scholar 

  • von Wright A, Wessels S, Tynkkynen S et al (1990) Isolation of a replication region of a large lactococcal plasmid and use in cloning of a nisin resistance determinant. Appl Environ Microbiol 56:2029–2035

    Article  Google Scholar 

  • Watterlot L, Rochat T, Sokol H et al (2010) Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice. Int J Food Microbiol 144(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Wei CH, Liu JK, Hou XL et al (2010) Immunogenicity and protective efficacy of orally or intranasally administered recombinant Lactobacillus casei expressing ETEC K99. Vaccine 28(24):4113–4118

    Article  CAS  PubMed  Google Scholar 

  • Wells JM, Wilson PW, Norton PM et al (1993) Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol 8(6):1155–1162

    Article  CAS  PubMed  Google Scholar 

  • Wong WY, Su P, Allison GE et al (2003) A potential food-grade cloning vector for Streptococcus thermophilus that uses cadmium resistance as the selectable marker. Appl Environ Microbiol 69(69):5767–5771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CM, Chung TC (2007) Mice protected by oral immunization with Lactobacillus reuteri secreting fusion protein of Escherichia coli enterotoxin subunit protein. FEMS Immunol Med Microbiol 50(3):354–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin KQ, Hoshino Y, Toda Y et al (2003) Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood 102(1):223–228

    Article  CAS  PubMed  Google Scholar 

  • Yam KK, Hugentobler F, Pouliot P et al (2011) Generation and evaluation of A2-expressing Lactococcus lactis live vaccines against Leishmania donovani in BALB/c mice. J Med Microbiol 60(9):1248–1260

    Article  CAS  PubMed  Google Scholar 

  • Yao LY, Man CX, Zhao F et al (2010) Expression of bovine trypsin in Lactococcus lactis. Int Dairy J 20(11):806–809

    Article  CAS  Google Scholar 

  • Ye W, Huo G, Chen J et al (2010) Heterologous expression of the Bacillus subtilis (natto) alanine dehydrogenase in Escherichia coli and Lactococcus lactis. Microbiol Res 165(4):268–275

    Article  CAS  PubMed  Google Scholar 

  • Yoon SW, Lee CH, Kim JY et al (2008) Lactobacillus casei secreting alpha-MSH induces the therapeutic effect on DSS-induced acute colitis in Balb/c Mice. J Microbiol Biotechnol 18(12):1975–1983

    CAS  PubMed  Google Scholar 

  • Zhang ZH, Jiang PH, Li NJ et al (2005) Oral vaccination of mice against rodent malaria with recombinant Lactococcus lactis expressing MSP-119. World J Gastroenterol 11(44):6975–6980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhong J, Liang X et al (2010) Improvement of human interferon alpha secretion by Lactococcus lactis. Biotechnol Lett 32(9):1271–1277

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zhong J, Huan L (2011) Expression of hepatitis B virus surface antigen determinants in Lactococcus lactis for oral vaccination. Microbiol Res 166(2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Zhao K (2014) Construction of thyA deficient Lactococcus lactis using the cre-loxp recombination system. Ann Microbiol 653:1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H., Chen, C., Ai, C., Ren, C., Gao, H. (2019). Genetic Operation System of Lactic Acid Bacteria and Its Applications. In: Chen, W. (eds) Lactic Acid Bacteria. Springer, Singapore. https://doi.org/10.1007/978-981-13-7832-4_2

Download citation

Publish with us

Policies and ethics