Skip to main content

Social Robot Intelligence and Network Consensus

  • Conference paper
  • First Online:
Book cover Robot Intelligence Technology and Applications (RiTA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1015))

  • 706 Accesses

Abstract

Synthetic intelligence models are highly relevant to the fast growing field of social robotics. Robots interacting with humans in the context of a non-lab environment are being upgraded at a fast pace in order to meet social expectations. To foster the integration in human societies, and hence coping with expectations, robots are likely to be endowed with typically human attributes, such as synthetic personality. Such social personality is the result of the interaction of a number of systems, some of high complexity, and can be thought of as a network of dynamic systems. The paper addresses the relations between frameworks consistent with synthetic intelligence models from Psychology, and models of networks with nonsmooth dynamics and consensus problems. The goals are (i) to achieve a framework that can establish bridges between architectures including concepts from social sciences and concepts from nonsmooth dynamic systems, and (ii) to determine the basic properties for such framework. Basic continuity and convexity properties are shown to be at the core of the framework.

Work supported by projects FP7-ICT-9-2011-601033-MOnarCH and FCT [UID/EEA/50009/2013].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use here the concepts of comparative and argumentative intelligence in [20], p. 118.

  2. 2.

    https://www.softbankrobotics.com/emea/en.

References

  1. Aubin, J., Cellina, A.: Differential Inclusions. Grundlehren der mathematischen Wissenschaften, vol. 264. Springer, Heidelberg (1984). https://doi.org/10.1007/978-3-642-69512-4

    Book  MATH  Google Scholar 

  2. Bach, J.: Principles of Synthetic Intelligence. Oxford Series on Cognitive Models and Architectures. Oxford University Press, Oxford (2009)

    Google Scholar 

  3. Benaïm, M., Hofbauer, J., Sorin, S.: Stochastic approximations and differential inclusions. SIAM J. Control Optim. 44(1), 328–348 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bernuau, E., Efimov, D., Perruquetti, W.: Robustness of homogeneous and locally homogeneous differential inclusions. In: Proceedings of the European Control Conference (ECC), Strasbourg, France, June 2014 (2014)

    Google Scholar 

  5. Bogdan, S., Lewis, F., Kovacic, Z., Mireles Jr., J.: Manufacturing Systems Control Design: A Matrix Based Approach. Springer, London (2006). https://doi.org/10.1007/1-84628-334-5

    Book  MATH  Google Scholar 

  6. Branicky, M., Phillis, S., Zhang, W.: Stability of networked control systems: explicit analysis of delay. In: Proceedings of the American Control Conference, June 2000

    Google Scholar 

  7. Brant, T.: Meet Sanbot, the Watson-Powered Droid, Here to Serve. PC Magazine, March 2017. https://www.pcmag.com/news/352776/meet-sanbot-the-watson-powered-droid-here-to-serve. Accessed July 2018

  8. Cârjă, O.: Qualitative properties of the solution set of differential inclusions. Technical report, Scientific Report on the implementation of the project PN-II-ID-PCE-2011-3-0154, November 2011–December 2013 (2013)

    Google Scholar 

  9. Cattell, R.: The Scientific Analysis of Personality. Penguin Books, Baltimore (1965)

    MATH  Google Scholar 

  10. Cortés, J.: Discontinuous dynamical systems: a tutorial on solutions, nonsmooth analysis, and stability (2009). https://arxiv.org/pdf/0901.3583.pdf. Accessed Aug 2018

  11. Curry, G., Feldman, R.: Manufacturing Systems Modeling and Analysis. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88763-8

    Book  MATH  Google Scholar 

  12. Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  13. Figueiredo, L., Santana, P., Alves, E., Ishihara, J., Borges, G., Bauchspiess, A.: Robust stability of networked control systems. In: Proceedings of 7th IEEE Conference on Control and Automation, ICCA, December 2009

    Google Scholar 

  14. Geletu, A.: Introduction to Topological Spaces and Set-Valued Maps, Lecture Notes. Institute of Mathematics, Department of Operations Research & Stochastics, August 2006

    Google Scholar 

  15. Goebel, R., Teel, A.: Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42(4), 573–587 (2006)

    Article  MathSciNet  Google Scholar 

  16. Goodall, D., Ryan, E.: Feedback controller differential inclusions and stabilization of uncertain dynamical systems. SIAM J. Control Optim. 26(6), 1431–1441 (1988)

    Article  MathSciNet  Google Scholar 

  17. Gorostiza, J., et al.: Multimodal human-robot interaction framework for a personal robot. In: Proceedings of RO-MAN 2006 (2006)

    Google Scholar 

  18. Liu, H., Xie, G., Wang, L.: Necessary and sufficient conditions for solving consensus problems of double-integrator dynamics via sampled control. Int. J. Robust Nonlinear Control 20, 1706–1722 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kanda, T., Ishiguro, H.: Human-Robot Interaction in Social Robotics. CRC Press, Boca Raton (2013)

    Google Scholar 

  20. Kant, I.: Anthropology From a Pragmatic Point of View. Southern Illinois University Press, Carbondale (1978). Translated by Victor Lyle Dowell and Hans H. Rudnick (eds.)

    Google Scholar 

  21. Kobayashi, K., Hiraishi, K.: Design of networked control systems using a stochastic switching systems approach. In: Proceedings of IECON 2012–38th Annual Conference on IEEE Industrial Electronics Society (2012)

    Google Scholar 

  22. Leine, R., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76975-0

    Book  MATH  Google Scholar 

  23. Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain Intelligence: Go Beyhond Artificial Intelligence (2018). https://arxiv.org/ftp/arxiv/papers/1706/1706.01040.pdf. Accessed Sept 2018

  24. Lunze, J.: What is a Hybrid System? In: Engell, S., Frehse, G., Schnieder, E. (eds.) Modelling, Analysis, and Design of Hybrid Systems, pp. 3–14. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45426-8_1

    Chapter  Google Scholar 

  25. Matsuno, Y., Yamamoto, S.: A framework for dependability consensus building and in-operation assurance. J. Wirel. Mob. Netw. 4(1), 118–134 (2012)

    Google Scholar 

  26. Namatame, A., Chen, S.: Agent-Based Modeling and Network Dynamics. Oxford University Press, Oxford (2016)

    Book  Google Scholar 

  27. Olfati-Saber, R., Alex Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  28. Porter, M., Gleeson, J.: Dynamical Systems on Networks: A Tutorial (2015). arXiv:1403.7663v2 [nlin.AO]

  29. Ren, W., Beard, R., Atkins, E.: A survey of consensus problems in multi-agent coordination. In: Proceedings of American Control Conference, Portland OR, USA, 8–10 June 2005 (2005)

    Google Scholar 

  30. Sequeira, J., Lima, P., Saffiotti, A., Gonzalez-Pacheco, V., Salichs, M.: MOnarCH: Multi-Robot Cognitive Systems Operating in Hospitals, Karlsruhe, Germany (2013)

    Google Scholar 

  31. Sequeira, J.: Dependability in robotics as a consensus problem. In: Proceedings of ROBIO 2017, Macau, PRC, 5–8 December 2017 (2017)

    Google Scholar 

  32. Sloman, A., Chrisley, R., Scheutz, M.: The architectural basis of affective states and processes. In: Fellous, J., Arbib, M. (eds.) Who Needs Emotions? The Brain Meets the Robot, pp. 203–244. Oxford University Press, Oxford (2005)

    Chapter  Google Scholar 

  33. Smirnov, G.: Introduction to the Theory of Differential Inclusions. Graduate Studies in Mathematics, vol. 41. American Mathematical Society, Providence (2001)

    Google Scholar 

  34. Sontag, E.: Input to state stability: basic concepts and results. In: Nistri, P., Stefani, G. (eds.) Nonlinear and Optimal Control Theory, pp. 163–220. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-77653-6_3

    Chapter  Google Scholar 

  35. Takayama, A.: Mathematical Economics, 2nd edn. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  36. Taniguchi, T.: Global existence of solutions of differential inclusions. J. Math. Anal. Appl. 166, 41–51 (1990)

    Article  MathSciNet  Google Scholar 

  37. Tarafdar, E., Chowdhury, M.: Topological Methods for Set-Valued Nonlinear Analysis. World Scientific Publishing Co. Pte. Ltd., Singapore (2008)

    Book  Google Scholar 

  38. Tupes, E., Christal, R.: Recurrent personality factors based on trait ratings. Technical report ASD-TR-61-97. Lackland Air Force Base, TX, Personnel Laboratory, Air Force Systems Command (1961)

    Google Scholar 

  39. Villani, E., Fathollahnejad, N., Pathan, R., Barbosa, R., Karlsson, J.: Reliability analysis of consensus in cooperative transport systems. In: Proceedings of the Workshop ASCoMS (Architecting Safety in Collaborative Mobile Systems) of the 32nd International Conference on Computer Safety, Reliability, and Security - SAFECOMP 2013, Toulouse, France (2013)

    Google Scholar 

  40. Wu, C.: Control of networks of coupled dynamical systems. In: Kocarev, L. (ed.) Consensus and Synchronization in Complex Networks, pp. 23–50. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33359-0_2

    Chapter  Google Scholar 

  41. Wu, C.: On control of networks of dynamical systems. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), Paris, 30 May–2 June, pp. 3785–3788 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Silva Sequeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sequeira, J.S. (2019). Social Robot Intelligence and Network Consensus. In: Kim, JH., Myung, H., Lee, SM. (eds) Robot Intelligence Technology and Applications. RiTA 2018. Communications in Computer and Information Science, vol 1015. Springer, Singapore. https://doi.org/10.1007/978-981-13-7780-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7780-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7779-2

  • Online ISBN: 978-981-13-7780-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics