Skip to main content

Molecular Techniques for Prenatal Diagnosis

  • Chapter
  • First Online:
Hematopathology
  • 1273 Accesses

Abstract

Inherited haematological diseases are the disorders that primarily affect the fundamental process of haematopoiesis and blood components. Any change in DNA sequence could be pathogenic if it has abnormal effect on biologic pathways within the cell. In present medical diagnosis, prenatal examination plays an important role. The era of prenatal diagnosis has evolved tremendously over the last two decades. The recent advances in molecular genetics and cytogenetic methods along with development in ultra-sonographic techniques made earlier and reliable prenatal diagnosis possible. With the evolvement of human genome project, there is a rapid increase in the number of genetic disorders for whom we can offer the prenatal diagnosis. Amniocentesis and chorionic villus sampling are two widely used invasive prenatal diagnostic procedures. To obtain complete foetal genetic information and avoid endangering the foetus, non-invasive prenatal diagnosis has become the vital goal of prenatal diagnosis. In this chapter, we have tried to summarize the current methodology and the newer techniques for the prenatal diagnosis of inherited haematological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wieacker P, Steinhard J. The prenatal diagnosis of genetic diseases. Dtsch Arztebl Int. 2010;107:857–62.

    PubMed  PubMed Central  Google Scholar 

  2. Brodsky R, Jones R. Aplastic anaemia. Lancet. 2005;365:1647–56.

    Article  CAS  Google Scholar 

  3. Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet. 2007;8:735–48.

    Article  CAS  Google Scholar 

  4. Chirnomas S, Kupfer G. The inherited bone marrow failure syndromes. Pediatr Clin North Am. 2013;60:1–21.

    Article  Google Scholar 

  5. Dokal I, Vulliamy T. Inherited bone marrow failure syndromes. Haematologica. 2010;95:1236–40.

    Article  CAS  Google Scholar 

  6. Kohne E. Haemoglobinopathies clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int. 2011;108:532–40.

    PubMed  PubMed Central  Google Scholar 

  7. Clarke G, Higgins T. Laboratory investigation of haemoglobinopathies and thalassaemias: review and update. Clin Chem. 2000;46:1284–90.

    CAS  PubMed  Google Scholar 

  8. Gallagher P. Abnormalities of the erythrocyte membrane. Pediatr Clin North Am. 2013;60:1349–62.

    Article  Google Scholar 

  9. Bianchi P, Fermo E, Imperiali F, et al. Hereditary red cell membrane defects: diagnostic and clinical aspects. Blood Transfus. 2011;9:274–7.

    PubMed  PubMed Central  Google Scholar 

  10. Koralkova P, Solinge W, Wijk R. Rare hereditary red blood cell enzymopathies associated with haemolytic anaemia—pathophysiology, clinical aspects, and laboratory diagnosis. Int J Lab Hematol. 2014;36:388–97.

    Article  CAS  Google Scholar 

  11. McCusker C, Warrington R. Primary immunodeficiency. Allergy Asthma Clin Immunol. 2011;7:1–8.

    Article  Google Scholar 

  12. Renneville A, Roumier C, Biggio V, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia. 2008;22:915–31.

    Article  CAS  Google Scholar 

  13. Buyukasik Y, Haznedaroglu I, Ilhan O. Chronic myeloid leukemia: practical issues in diagnosis, treatment and follow-up. Int J Hematol Oncol. 2010;20:1–12.

    Article  CAS  Google Scholar 

  14. Johnson B, Fletcher S, Morgan N. Inherited thrombocytopenia: novel insights into megakaryocyte maturation, proplatelet formation and platelet lifespan. Platelets. 2016;27:519–25.

    Article  CAS  Google Scholar 

  15. D’Andrea G, Chetta M, Margaglione M. Inherited platelet disorders: thrombocytopenias and thrombocytopathies. Blood Transfus. 2009;7:278–92.

    PubMed  PubMed Central  Google Scholar 

  16. Bowen J. Haemophilia A and haemophilia B: molecular insights. Mol Pathol. 2002;55:1–18.

    Article  CAS  Google Scholar 

  17. Cheng W, Hsiao C, Tseng H, et al. Non invasive prenatal diagnosis. Taiwan J Obstet Gynecol. 2015;54:343–9.

    Article  Google Scholar 

  18. Old J, Ward R, Petrou M, et al. First-trimester fetal diagnosis for haemoglobinopathies: three cases. Lancet. 1982;2:1413–6.

    Article  CAS  Google Scholar 

  19. Stott P. Sampling of the chorionic villi: a technique to complement amniocentesis. J R Coll Gen Pract. 1985;35:316–7.

    PubMed Central  Google Scholar 

  20. Kazy Z, Rozofsky I, Bakharev V. Chorion biopsy in early pregnancy: a method of early prenatal diagnosis for inherited disorders. Prenat Diagn. 1982;2:39–45.

    Article  Google Scholar 

  21. South S, Chen W, Brothman A. Genomic medicine in prenatal diagnosis. Clin Obstet Gynecol. 2008;51:62–73.

    Article  Google Scholar 

  22. Simoni G, Colognato R. The amniotic fluid-derived cells: the biomedical challenge for the third millennium. J Prenat Med. 2009;3:34–6.

    PubMed  PubMed Central  Google Scholar 

  23. Shulman L, Elias S. Amniocentesis and chorionic villus sampling. West J Med. 1993;159:260–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Daffos F, Capella-Pavlovsky M, Forestier F. Fetal blood sampling via the umbilical cord using a needle guided by ultrasound. Report of 66 cases. Prenat Diagn. 1983;3:271–7.

    Article  CAS  Google Scholar 

  25. Henderson J, Weiner C. Cordocentesis. Glob Libr Womens Med. 2008. https://doi.org/10.3843/GLOWM.10212. Accessed 25/12/2017.

  26. Kleihauer E, Braun H, Betke K. Demonstration of fetal hemoglobin in erythrocytes of a blood smear. Klin Wochenschr. 1957;35:637–8.

    Article  CAS  Google Scholar 

  27. Budau G, Anastasiu D, Muresan C, et al. Cordocentesis in prenatal diagnosis case report. J Exp Med Surg Res. 2008;3:100–4.

    Google Scholar 

  28. Liao C, Wei J, Li Q, et al. Efficacy and safety of cordocentesis for prenatal diagnosis. Int J Gynaecol Obstet. 2006;93:13–7.

    Article  Google Scholar 

  29. Orlandi F, Damiani G, Jakil C, et al. The risks of early cordocentesis (12-21 weeks): analysis of 500 procedures. Prenat Diagn. 1990;10:425–8.

    Article  CAS  Google Scholar 

  30. Wright C, Burton H. The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update. 2009;15:139–51.

    Article  CAS  Google Scholar 

  31. Lo Y, Tein M, Lau T, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for non-invasive prenatal diagnosis. Am J Hum Genet. 1998;62:768–75.

    Article  CAS  Google Scholar 

  32. Alberry M, Maddocks D, Jones M, et al. Free fetal DNA in maternal plasma in an embryonic pregnancies: confirmation that the origin is the trophoblast. Prenat Diagn. 2007;27:415–8.

    Article  CAS  Google Scholar 

  33. Birch L, English A, O’Donoghue K, et al. Accurate and robust quantification of circulating fetal and total DNA in maternal plasma from 5 to 41 weeks of gestation. Clin Chem. 2005;51:312–20.

    Article  CAS  Google Scholar 

  34. Lo D, Zhang J, Leung N, et al. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64:218–24.

    Article  CAS  Google Scholar 

  35. D’Souza E, Sawant P, Nadkarni A, et al. Detection of fetal mutations causing hemoglobinopathies by non-invasive prenatal diagnosis from maternal plasma. J Postgrad Med. 2013;59:15–20.

    Article  Google Scholar 

  36. Https://emedicine.medscape.com/article/273415-overview. Accessed 25/12/2017.

  37. Harper C. Introduction. Preimplantation genetic diagnosis. London: Wiley; 2001. p. 3–12.

    Book  Google Scholar 

  38. Handyside A, Kontogianni E, Hardy K, et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344:768–70.

    Article  CAS  Google Scholar 

  39. Basille C, Frydman R, El Aly A, et al. Preimplantation genetic diagnosis: state of the art. Eur J Obstet Gynecol Reprod Biol. 2009;145:9–13.

    Article  CAS  Google Scholar 

  40. Http://www.ivf-worldwide.com/cogen/oep/pgd-pgs/history-of-pgd-and-pgs.html. Accessed 26/12/2017.

  41. Geraedts J, De Wert G. Preimplantation genetic diagnosis. Clin Genet. 2009;76:315–25.

    Article  CAS  Google Scholar 

  42. Decorte R, Cuppens H, Marynen P, et al. Rapid detection of hypervariable regions by the polymerase chain reaction technique. DNA Cell Biol. 1990;9:461–9.

    Article  CAS  Google Scholar 

  43. Fakher R, Bijan K, Taghi A. Application of diagnostic methods and molecular diagnosis of hemoglobin disorders in Khuzestan province of Iran. Indian J Hum Genet. 2007;13:5–15.

    Article  CAS  Google Scholar 

  44. Colah R, Gorakshakar A, Lu C, et al. Application of covalent reverse dot-blot hybridization for rapid prenatal diagnosis of the common Indian thalassemia syndromes. Indian J Hematol Blood Transfus. 1997;15:10–3.

    Google Scholar 

  45. Newton R, Graham A, Heptinstall E, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989;17:2503–16.

    Article  CAS  Google Scholar 

  46. Old J, Harteveld C, Traeger-Synodinos J, et al. Prevention of thalassaemias and other haemoglobin disorders. Vol. 2. Laboratory protocols [Internet]. 2nd ed. 2012. Thalassemia International Federation, Nicosia, Cyprus.

    Google Scholar 

  47. Gorakshakar A, Lulla C, Nadkarni A, et al. Prenatal diagnosis of beta-thalassemia among Indians using denaturing gradient gel electrophoresis. Haemoglobin. 1997;21:421–35.

    Article  CAS  Google Scholar 

  48. Nataraj A, Olivos-Glander I, Kusukawa N, et al. Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection. Electrophoresis. 1999;20:1177–85.

    Article  CAS  Google Scholar 

  49. Rahimi A, Shahhosseiny H, Ahangari G, et al. Prenatal sex determination in suspicious cases of X-linked recessive diseases by the amelogenin gene. Iran J Basic Med Sci. 2014;17:134–7.

    PubMed  PubMed Central  Google Scholar 

  50. Stuppia L, Antonucci I, Palka G, et al. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci. 2012;13:3245–76.

    Article  CAS  Google Scholar 

  51. Gallienne A, Dréau H, McCarthy J, et al. Multiplex ligation-dependent probe amplification identification of 17 different β-globin gene deletions (including four novel mutations) in the UK population. Hemoglobin. 2009;33:406–16.

    Article  CAS  Google Scholar 

  52. Ku C, Cooper D, Polychronakos C, et al. Exome sequencing: dual role as a discovery and diagnostic tool. Ann Neurol. 2012;71:5–14.

    Article  CAS  Google Scholar 

  53. Bamshad M, Ng S, Bigham A, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12:745–55.

    Article  CAS  Google Scholar 

  54. Schuster S. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5:16–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadkarni, A., Hariharan, P. (2019). Molecular Techniques for Prenatal Diagnosis. In: Saxena, R., Pati, H. (eds) Hematopathology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7713-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7713-6_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7712-9

  • Online ISBN: 978-981-13-7713-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics