Skip to main content

Alloantigens and Their Role in Immune Cytopenias

  • Chapter
  • First Online:
Hematopathology
  • 1267 Accesses

Abstract

Immune cytopenia is a reduction in the number of mature blood cells. This can be caused by alloantigens present on the surface of blood cells i.e. red blood cells or erthyrocytes, white blood cells or leucocytes and platelets or thromobocytes. Alloantigens stimulate the immune system of host against foreign antigens causing alloimmunization and subsequent production of alloantibodies which caused decreased survival of blood cells in vivo. This chapter focuses on red blood cell antigens, human platelet antigens, human neutrophil antigens and human leucocyte antigens and their role in immune cytopenias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Storry JR, Castilho L, Chen Q, Daniels G, Denomme G, Flegel WA, Gassner C, Haas M, Hyland C, Keller M, Lomas‐Francis C. International Society of Blood Transfusion Working Party on red cell immunogenetics and terminology: report of the Seoul and London meetings. ISBT Sci Ser. 2016;11(2):118–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cartron JP. Elute quantitative et thermo dynamique des phenotypes erythrocytaires “Afaible”. Rev franc Transfus Immunohaemat. 1976;19:35.

    Article  CAS  Google Scholar 

  3. Yamamoto F, Clausen H, White T, Marken J, Hakomori S. Molecular genetic basis of the histo-blood group system. Nature. 1990;345:229–33.

    Article  CAS  PubMed  Google Scholar 

  4. Levine P, Stetson RE. An unusual case of intragroup agglutination. JAMA. 1939;13:126–7.

    Article  Google Scholar 

  5. Tippett P. A speculative model for Rh blood groups. Ann Hum Genet. 1986;50:241–7.

    Article  CAS  PubMed  Google Scholar 

  6. Shao CP, Maas JH, Su YQ, Köhler M, Legler TJ. Molecular background of Rh Dpositive, D-negative, D(el) and weak D phenotypes in Chinese. Vox Sang. 2002;83:156–61.

    Article  CAS  PubMed  Google Scholar 

  7. Patnaik SK, Helmberg W, Blumenfeld OO. BGMUT database of allelic variants of genes encoding human blood group antigens. Transfus Med Hemother. 2014;41(5):346–51.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Silberstein LE, Naryshkin S, Haddad JJ, Strauss JF. Calcium homeostasis during therapeutic plasma exchange. Transfusion. 1986;26:151.

    Article  CAS  PubMed  Google Scholar 

  9. Cox JV, Steane E, Cunningham G, Frenkel EP. Risk of alloimmunization and delayed hemolytic transfusion reactions in patients with sickle cell disease. Arch Intern Med. 1988;148:2488.

    Article  Google Scholar 

  10. Singerb ST, Wu V, Mignacca R, et al. Alloimmunisation and erythrocyte autoimmunisation in transfusion-dependent thalassemia patients of predominant Asian descent. Blood. 2000;96:3369–73.

    Google Scholar 

  11. Hoeltge GA, Domen RE, Rybicki LA, Schaffer PA. Multiple red cell transfusions and alloimmunization. Experiences with 6996 antibodies detected in a total of 159,262 patients from 1985-1993. Arch Pathol Lab Med. 1995;119:42–5.

    CAS  PubMed  Google Scholar 

  12. Makarovska-Bojadzieva T, Blagoevska M, Kolevski P, Kostovska S. Optimal blood gouping and antibody screenining for safe transfusion. Contrib Sec Biol Med Sci MASA. 2009;30:119–28.

    CAS  Google Scholar 

  13. Seltsam A, Wagner FF, Salama A, et al. Antibodies to high-frequency antigens may decrease the quality of transfusion support: an observational study. Transfusion. 2003;43:1563–6.

    Article  CAS  PubMed  Google Scholar 

  14. Schonewille H, Van De Watering LM, Brand A. Additional red blood cell alloantibodies after blood transfusions in a nonhematologic alloimmunized patient cohort: is it time to take precautionary measures? Transfusion. 2006;46:630–5.

    Article  CAS  PubMed  Google Scholar 

  15. Holland PV. The diagnosis and management of transfusion reactions and other adverse effects of transfusion. In: Petz LD, Swisher SN, editors. Clinical practice of transfusion medicine. 2nd ed. New York: Churchill Livingstone; 1989. p. 714.

    Google Scholar 

  16. Zupanska B, Thomson EE, Merry AH. Fc receptors for IgG1 and IgG3 on human mononuclear cells and evaluation with known levels of erythrocyte bound IgG. Vox Sang. 1986;50:97–103.

    CAS  PubMed  Google Scholar 

  17. Tahhan HR, Holbrook CT, Braddy LR, et al. Antigen matched donor blood in the transfusion management of patients with sickle-cell disease. Transfusion. 1994;34:562–9.

    Article  CAS  PubMed  Google Scholar 

  18. Singer ST, Wu V, Mignacca R, Kuypers FA, Morel P, Vichinsky EP. Alloimmunization and erythrocyte autoimmunization in transfusion-dependent thalassemia patients of predominantly Asian descent. Blood. 2000;96:3369–73.

    CAS  PubMed  Google Scholar 

  19. Pujani M, Pahuja S, Dhingra B, Chandra J, Jain M. Alloimmunisation in thalassaemics: a comparison between recipients of usual matched and partial better matched blood. An evaluation at a tertiary care centre in India. Blood Transfus. 2014;12:s100.

    PubMed  PubMed Central  Google Scholar 

  20. Castro O, Sandler SG, Houston‐Yu P, Rana S. Predicting the effect of transfusing only phenotype‐matched RBCs to patients with sickle cell disease: Theoretical and practical implications. Transfusion. 2002;42:684–90.

    Article  CAS  PubMed  Google Scholar 

  21. Shirey RS, Boyd JS, Parwani AV, Tanz WS, Ness PM, King KE. Prophylactic antigen‐matched donor blood for patients with warm autoantibodies: an algorithm for transfusion management. Transfusion. 2002;42:1435–41.

    Article  CAS  PubMed  Google Scholar 

  22. Novotny VM. Prevention and management of platelet transfusion refractoriness. Vox Sang. 1999;76:1–13.

    Article  CAS  PubMed  Google Scholar 

  23. Peterson JA, Gitter ML, Kanack A, et al. New low-frequency platelet glycoprotein polymorphisms associated with neonatal alloimmune thrombocytopenia. Transfusion. 2010;50:324–33.

    Article  CAS  PubMed  Google Scholar 

  24. Kroll H, Kiefel V, Santoso S. Clinical aspects and typing of platelet alloantigens. Vox Sang. 1998;74:s345–54.

    Article  Google Scholar 

  25. Davoren A, Curtis BR, Aster RH, McFarland JG. Human platelet antigen-specific alloantibodies implicated in 1162 cases of neonatal alloimmune thrombocytopenia. Transfusion. 2004;44:1220–5.

    Article  CAS  PubMed  Google Scholar 

  26. Knight M, Pierce M, Allen D, Kurinczuk JJ, Spark P, Roberts DJ, Murphy MF. The incidence and outcomes of fetomaternal alloimmune thrombocytopenia: a UK national study using three data sources. Br J Haematol. 2011;152:460–8.

    Article  PubMed  Google Scholar 

  27. Lalezari P, Bernard GE. An isologous antigen-antibody reaction with human neutrophils, related to neonatal neutropenia. J Clin Invest. 1966;45:1741–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lalezari P, Radel E. Neutrophil-specific antigens: immunology and clinical significance. Semin Hematol. 1974;11:281–90.

    CAS  PubMed  Google Scholar 

  29. Lalezari P, Murphy GB, Allen FH. NB1, a new neutrophil antigen involved in the pathogenesis of neonatal neutropenia. J Clin Invest. 1971;50:1108–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang ST, Lin J, McGowan EL, et al. NB2, a new allele of NB1 antigen involved in febrile transfusion reaction (abstract). Transfusion. 1982;22:426.

    Google Scholar 

  31. Lalezari P, Petrosova M, Jiang AF. NB2, an allele of NB1 neutrophil specific antigen: relationship to 9a (abstract). Transfusion. 1982;22:433.

    Google Scholar 

  32. Lalezari P, Thelenfeld B, Weinstein WJ. The third neutrophil antigen. In: Terasaki PI, editor. Histocompatibility testing. Baltimore: Williams & Wilkins; 1970. p. 319–22.

    Google Scholar 

  33. Verheugt FWA, von dem Borne AE, van Noord-Bokhorst JC, et al. ND1, a new neutrophil granulocyte antigen. Vox Sang. 1978;35:13–7.

    CAS  PubMed  Google Scholar 

  34. Claas FHJ, Langerak J, Sabbe LJM, et al. NE1, a new neutrophil specific antigen. Tissue Antigens. 1979;13:129–34.

    Article  CAS  PubMed  Google Scholar 

  35. Bux J, Sohn M, Hachmann R, et al. Quantitation of granulocyte antibodies in sera and determination of their binding sites. Br J Haematol. 1992;82:20–5.

    Article  CAS  PubMed  Google Scholar 

  36. Huizinga TW, van der Schoot CE, Jost C, et al. The PI-linked receptor FcRIII is released on stimulation of neutrophils. Nature. 1988;333:667–9.

    Article  CAS  PubMed  Google Scholar 

  37. Huizinga TW, van Kemenade F, Koenderman L, et al. The 40-kDa Fc gamma receptor (FcRII) on human neutrophils is essential for the IgG-induced respiratory burst and IgG-induced phagocytosis. J Immunol. 1989;142:2365–9.

    CAS  PubMed  Google Scholar 

  38. Unkeless JC, Shen Z, Lin CW, et al. Function of human Fc gamma RIIA and Fc gamma RIIIB. Semin Immunol. 1995;7:37–44.

    Article  CAS  PubMed  Google Scholar 

  39. Bux J, Behrens G, Jäger G, Welte K. Diagnosis and clinical course of autoimmune neutropenia in infancy: analysis 240 cases. Blood. 1997;89:1027–34.

    CAS  PubMed  Google Scholar 

  40. Huizinga TW, Kleijer M, Tetteroo PA, et al. Biallelic neutrophil Na-antigen system is associated with a polymorphism on the phospho-inositol-linked Fcc Receptor III (CD16). Blood. 1990;75:213–7.

    CAS  PubMed  Google Scholar 

  41. Qiu WQ, de Bruin D, Brownstein BH, Pearse R, Ravetch JV. Organization of the human and mouse low-affinity FcgR genes: Duplication and recombination. Science. 1990;248:732.

    Article  CAS  PubMed  Google Scholar 

  42. Ravetch JV, Perussia B. Alternative membrane forms of FcRIII (CD16) on human natural killer cells and neutrophils. J Exp Med. 1989;170:481–97.

    Article  CAS  PubMed  Google Scholar 

  43. Ory PA, Clark MR, Kwoh EE, Clarkson SB, Goldstein IM. Sequences of complementary DNAs that encode the NA1 and NA2 forms of Fc receptor III on human neutrophils. J Clin Invest. 1989;84:1688–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ory PA, Goldstein IM, Kwoh EE, Clarkson SB. Characterization of polymorphic forms of Fc receptor III on human neutrophils. J Clin Invest. 1989;83:1676–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Haas M, Kleijer M, Van Zwieten R, Roos D, Von Dem Borne AE. Neutrophil Fcγ RIIIb deficiency, nature and clinical consequences: a study of 21 individuals from 14 families. Blood. 1995;86:2403–13.

    PubMed  Google Scholar 

  46. Huizinga TW, Kuijpers RWA, Kleijer M, Schulpen TW, Cuypers HTM, Roos D, Von Dem Borne AE. Maternal genomic FcRIII deficiency leading to neonatal isoimmune neutropenia. Blood. 1990;76:1927–32.

    CAS  PubMed  Google Scholar 

  47. Reil A, Sachs UJ, Siahanidou T, Flesch BK, Bux J. HNA‐1d: a new human neutrophil antigen located on Fcγ receptor IIIb associated with neonatal immune neutropenia. Transfusion. 2013;53:2145–51.

    CAS  PubMed  Google Scholar 

  48. Bux J, Hartmann C, Mueller-Eckhart C. Alloimmune neonatal neutropenia resulting from immunization to a high-frequency antigen on the granulocyte Fc g receptor III. Transfusion. 1994;34:608–11.

    Article  CAS  PubMed  Google Scholar 

  49. Bux J, Kissel K, Nowak K, et al. Autoimmune neutropenia: clinical and laboratory studies in 143 patients. Ann Hematol. 1991;63:249–52.

    Article  CAS  PubMed  Google Scholar 

  50. Stroncek DF, Skubitz KM, Plachta LB, et al. Alloimmune neonatal neutropenia due to an antibody to the neutrophil Fc-greceptor III with maternal deficiency of CD16 antigen. Blood. 1991;77:1572–80.

    CAS  PubMed  Google Scholar 

  51. Fung YL, Goodison KA, Wong JK, et al. Investigating transfusion-related acute lung injury (TRALI). Intern Med J. 2003;33:286–90.

    Article  CAS  PubMed  Google Scholar 

  52. Lucas GF, Rogers S, Evans R, et al. Transfusion-related acute lung injury associated with interdonor incompatibility for the neutrophil-specific antigen HNA-1a. Vox Sang. 2000;79:112–5.

    Article  CAS  PubMed  Google Scholar 

  53. Bux J, Dickmann JO, Stockert U, et al. Influence of granulocyte antibodies on granulocyte function. Vox Sang. 1993;64:220–5.

    Article  CAS  PubMed  Google Scholar 

  54. Goldschmeding R, van Dalen CM, Faber N, Calafat J, Huizinga TWJ, van der Schoot CE, et al. Further characterization of the NB1 antigen as a variably expressed 56–62 kD GPI-linked glycoprotein of plasma membranes and specific granules of neutrophils. Br J Haematol. 1992;81:336–45.

    Article  CAS  PubMed  Google Scholar 

  55. Kissel K, Scheffler S, Kerowgan M, et al. Molecular basis of NB1 (HNA-2a, CD177) deficiency. Blood. 2002;99:4231–3.

    Article  CAS  PubMed  Google Scholar 

  56. Stroncek D. Granulocyte antigens and antibody detection. Vox Sang. 2004;87(S1):91–4.

    Article  PubMed  Google Scholar 

  57. Bux J, Jung KD, Kauth T, et al. Serological and clinical aspects of granulocyte antibodies leading to alloimmune neonatal neutropenia. Transfus Med. 1992;2:143–9.

    Article  CAS  PubMed  Google Scholar 

  58. Bux J. Granulocyte antibody mediated neutropenias and transfusion reactions. Infus Ther Transfus Med. 1999;26:152–7.

    Google Scholar 

  59. Bux J, Becker F, Seeger W, et al. Transfusion-related acute lung injury due to HLR-A2-specific antibodies in recipient and NB1-specific antibodies in donor blood. Br J Haematol. 1996;93:707–13.

    Article  CAS  PubMed  Google Scholar 

  60. Stroncek DF, Shankar RH, Herr GP. Quininedependent antibodies to neutrophils react with a 60kD glycoprotein on which neutrophil-specific antigenNB1 is located and an 85 kD glycosylphosphatidylinositol– linked N-glycosylated plasma membrane protein. Blood. 1993;81:2758–66.

    CAS  PubMed  Google Scholar 

  61. van Leeuwen A, Eernisse JG, van Rood JJ. A new leucocyte group with two alleles: leucocyte group five. Vox Sang. 1964;9:431–46.

    Article  CAS  Google Scholar 

  62. De Haas M, Muniz-Dias E, Alonso LG, Van Der Kolk K, Kos M, Buddelmeijer L, Porcelijn L, Von Dem Borne AE. Neutrophil antigen 5b is carried by a protein, migrating from 70 to 95 kDa, and may be involved in neonatal alloimmune neutropenias. Transfusion. 2000;40:222–7.

    Article  PubMed  Google Scholar 

  63. Curtis BR, Cox NJ, Sullivan MJ, Konkashbaev A, Bowens K, Hansen K, Aster RH. The neutrophil alloantigen HNA-3a (5b) is located on choline transporter-like protein 2 and appears to be encoded by an R> Q154 amino acid substitution. Blood. 2010;115(10):2073–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huvard MJ, Schmid P, Stroncek DF, et al. Frequencies of SLC44A2 alleles encoding human neutrophil antigen-3 variants in the African American population. Transfusion. 2011;52:1106–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Flesch BK, Reil A, Bux J. Genetic variation of the HNA-3a encoding gene. Transfusion. 2011;51:2391–7.

    Article  CAS  PubMed  Google Scholar 

  66. Lalezari P, Bernard GE. Identification of a specific leukocyte antigen: another presumed example of 5b. Transfusion. 1965;5(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  67. Davoren A, Curtis BR, Shukman IA, Mohrbacher AF, Bux J, Kwiatkowska BJ, Mcfarland JG, Aster RH. TRALI due to granulocyte-agglutinating human neutrophil antigen-3a (5b) alloantibodies in dnor plasma: a report of 2 fatalities. Transfusion. 2003;43:641–5.

    Article  CAS  PubMed  Google Scholar 

  68. Simsek S, van der Schoot CE, Daams M, et al. Molecular characterization of antigenic polymorphisms (Ond(a) and Mart(a)) of the beta 2 family recognized by human leukocyte alloantisera. Blood. 1996;88:1350–8.

    CAS  PubMed  Google Scholar 

  69. Fung YL, Pitcher LA, Willett JE, et al. Alloimmune neonatal neutropenia linked to anti-HNA-4a. Transfus Med. 2003;13:49–52.

    Article  CAS  PubMed  Google Scholar 

  70. Porcelijn L, Abbink F, Terraneo L, Onderwater-vd Hoogen L, Huiskes E, de Hass M. Neonatal alloimmune neutropenia due to immunoglobulin G antibodies against human neutrophil antigen-5a. Transfusion. 2011;51:574–7.

    Article  CAS  PubMed  Google Scholar 

  71. Moritz E, Norcia AM, Cardone JD, et al. Human neutrophil alloantigens systems. An Acad Bras Cienc. 2009;81:559–69.

    Article  CAS  PubMed  Google Scholar 

  72. Fung YL, Minchinton RM. The fundamentals of neutrophil antigen and antibody investigations. ISBT Sci Ser. 2011;6:381–6.

    Article  CAS  Google Scholar 

  73. Middelburg RA, Porcelijn L, Lardy N, Briët E, Vrielink H. Prevalence of leucocyte antibodies in the Dutch donor population. Vox Sang. 2011;100:327–35.

    Article  CAS  PubMed  Google Scholar 

  74. Lucas G, Win N, Calvert A, et al. Reducing the incidence of TRALI in the UK: the results of screening for donor leucocyte antibodies and the development of national guidelines. Vox Sang. 2012;103:10–7.

    Article  CAS  PubMed  Google Scholar 

  75. Gottschall JL, Triulzi DJ, Curtis B, et al. The frequency and specificity of human neutrophil antigen antibodies in a blood donor population. Transfusion. 2011;51:820–7.

    Article  CAS  PubMed  Google Scholar 

  76. Reil A, Keller-Stanislawski B, Günay S, Bux J. Specificities of leucocyte alloantibodies in transfusion-related acute lung injury and results of leucocyte antibody screening of blood donors. Vox Sang. 2008;95:313–7.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang X, Araki N, Ito K. Post-transfusion alloimmunization to granulocytes and platelets in Japanese patients as determined by the MPHA method. Transfus Apher Sci. 2001;25:163–72.

    Article  CAS  PubMed  Google Scholar 

  78. Densmore TL, Goodnough LT, Ali S, Dynis M, Chaplin H. Prevalence of HLA sensitization in female apheresis donors. Transfusion. 1999;39:103–6.

    Article  CAS  PubMed  Google Scholar 

  79. Sachs UJ, Link E, Hofmann C, Wasel W, Bein G. Screening of multiparous women to avoid transfusion-related acute lung injury: a single centre experience. Transfus Med. 2008;18(6):348–54.

    Article  CAS  PubMed  Google Scholar 

  80. Dausset H. Leukoagglutinins: leukoagglutinins and blood transfusion. J Vox Sang. 1954;4:190.

    Google Scholar 

  81. Dausset J. Iso-leuco-anticorps. Acta Haematol. 1958;20:156.

    Article  CAS  PubMed  Google Scholar 

  82. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5:889–99.

    Article  CAS  PubMed  Google Scholar 

  83. Bjorkman PJ, et al. Structure of the HLA class I histocompatibility antigen, HLA-A2. Nature. 1987;329:506.

    Article  CAS  PubMed  Google Scholar 

  84. Brown JH, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993;364:33.

    Article  CAS  PubMed  Google Scholar 

  85. Colombani J. Blood platelets in HL-A serology. Transplant Proc. 1971;3:1078.

    CAS  PubMed  Google Scholar 

  86. Svejgaard A, Kissemeyer-Nielson F, Thorsby E. HL-A typing of platelets. In: Terasaki PI, editor. Histocompatibility testing 1970. Copenhagen: Munksgaard; 1970. p. 160.

    Google Scholar 

  87. Leibert M, Aster RH. Expression of HLA-B12 on platelets, on lymphocytes, and in serum: a quantitative study. Tissue Antigens. 1977;9:199.

    Article  Google Scholar 

  88. Aster RH, Szatkowski N, Liebert M. Expression of HLAB12, HLA-B8, W4, and W6 on platelets. Transplant Proc. 1977;9:1965.

    Google Scholar 

  89. Duquesnoy RJ, Testin J, Aster RH. Variable expression of W4 and W6 on platelets: Possible relevance to platelet transfusion therapy of alloimmunized thrombocytopenic patients. Transplant Proc. 1977;9:1827.

    CAS  PubMed  Google Scholar 

  90. Popovski MA, Moore SB. Diagnostic and pathogenic considerations in transfusion-related acute lung injury. Transfusion. 1985;25:573.

    Article  Google Scholar 

  91. Kopko PM, et al. HLA class II antibodies in transfusion-related acute lung injury. Transfusion. 2001;41:1244.

    Article  CAS  PubMed  Google Scholar 

  92. Eder AF, et al. Transfusion-related acute lung injury surveillance (2003–2005) and the potential impact of the selective use of plasma from male donors in the American Red Cross. Transfusion. 2007;47:599.

    Article  PubMed  Google Scholar 

  93. Tiercy JM, Jannet M, Mach B. A new approach for the analysis of HLA class II polymorphism: HLA oligo typing. Blood Rev. 1990;4:9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gorakshakar, A., Gogri, H. (2019). Alloantigens and Their Role in Immune Cytopenias. In: Saxena, R., Pati, H. (eds) Hematopathology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7713-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7713-6_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7712-9

  • Online ISBN: 978-981-13-7713-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics