Skip to main content

Thrombophilia: Hereditary and Acquired

  • Chapter
  • First Online:
Hematopathology

Abstract

The term thrombophilia (or hypercoagulability) denotes the presence of risk factors for the development of venous or/and arterial thrombosis. It could be inherited or acquired defect of haemostatic system [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pendleton RC, Rodgers GM. Chapter 55: Thrombosis and anti-thrombotic therapy. In: Wintrobe’s clinical hematology. 13th ed. Philadelphia: Wolters Kluwer Lippincott Williams & Wilkins Health; 2014. p. 1218–1257.

    Google Scholar 

  2. Lee AD, Stephen E, Agarwal S, Premkumar P. Venous thrombo-embolism in India. Eur J Vasc Endovasc Surg. 2009;37:482–5.

    Article  CAS  Google Scholar 

  3. Agarwal S, Lee AD, Raju RS, Stephen E. Venous thrombo-embolism: a problem in Indian/Asian polulation? Indian J Urol. 2009;25(1):11–6.

    Article  Google Scholar 

  4. Moll S. Thrombophilia: clinical–practical aspects. J Thromb Thrombolysis. 2015;39:367–78.

    Article  CAS  Google Scholar 

  5. Middeldorp S. Inherited thrombophilia: a double edged sword. Hematology Am Soc Hematol Educ Program. 2016;(1):1–9.

    Article  Google Scholar 

  6. American College of Obstetricians and Gynecologists Women’s Health Care Physicians. ACOG practice bulletin no.138: inherited thrombophilia in pregnancy. Obstet Gynecol. 2013;122(3):706–17.

    Article  Google Scholar 

  7. Connors JM. Thrombophilia testing and venous thrombosis. N Engl J Med. 2017;377(12):1177–87.

    Article  Google Scholar 

  8. APLA Pengo V, Tripodi A, Reber G, et al. Update of the guidelines for lupus anticoagulant detection. Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibody of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. J Thromb Haemost. 2009;7:1737.

    Article  Google Scholar 

  9. Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378(21):2010–21.

    Article  CAS  Google Scholar 

  10. Harris EN, Pierangeli SS. Primary, secondary, and catastrophic antiphospholipid syndrome: what’s in a name? Semin Thromb Hemost. 2008;34(3):219–26.

    Article  Google Scholar 

  11. Rodriguez-Garcia JL, Bertolaccini ML, Cuadrado MJ, Sanna G, Ateka-Barrutia O, Khamashta MA. Clinical manifestations of antiphospholipid syndrome (APS) with and without antiphospholipid antibodies (the so-called ‘seronegative APS’). Ann Rheum Dis. 2012;71(2):242–4.

    Article  Google Scholar 

  12. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295.

    Article  CAS  Google Scholar 

  13. Ruiz-Irastorza G, Crowther M, Branch W, Khamashta MA. Antiphospholipid syndrome. Lancet. 2010;376:1498.

    Article  CAS  Google Scholar 

  14. CLSI. Laboratory testing for the lupus anticoagulant; approved guideline. CLSI document H60-A. Wayne: Clinical and Laboratory Standards Institute; 2014.

    Google Scholar 

  15. Moore GW. Recent guidelines and recommendations for laboratory detection of lupus anticoagulants. Semin Thromb Hemost. 2014;40(2):163–71.

    Article  CAS  Google Scholar 

  16. Castoldi E, Brugge JM, Nicolaes GA, et al. Impaired APC cofactor activity of factor V plays a major role in the APC resistance associated with the factor V Leiden (R506Q) and R2 (H1299R) mutations. Blood. 2004;103:4173.

    Article  CAS  Google Scholar 

  17. Guasch JF, Lensen RP, Bertina RM. Molecular characterization of a type I quantitative factor V deficiency in a thrombosis patient that is “pseudo homozygous” for activated protein C resistance. Thromb Haemost. 1997;77:252.

    Article  CAS  Google Scholar 

  18. Alhenc-Gelas M, Nicaud V, Gandrille S, et al. The factor V gene A4070G mutation and the risk of venous thrombosis. Thromb Haemost. 1999;81:193.

    Article  CAS  Google Scholar 

  19. Trossaërt M, Conard J, Horellou MH, et al. The modified APC resistance test in the presence of factor V deficient plasma can be used in patients without oral anticoagulant. Thromb Haemost. 1996;75:521.

    PubMed  Google Scholar 

  20. Bertina RM, Koeleman BP, Koster T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994;369:64.

    Article  CAS  Google Scholar 

  21. AT Kumar R, Chan AK, Dawson JE, et al. Clinical presentation and molecular basis of congenital antithrombin deficiency in children: a cohort study. Br J Haematol. 2014;166:130.

    Article  Google Scholar 

  22. https://www1.imperial.ac.uk/departmentofmedicine/divisions/experimentalmedicine/haematology/coag/antithrombin/

  23. Mammen EF. Antithrombin: its physiological importance and role in DIC. Semin Thromb Hemost. 1998;24:19.

    Article  CAS  Google Scholar 

  24. Gaustadnes M, Rüdiger N, Rasmussen K, Ingerslev J. Intermediate and severe hyperhomocysteinemia with thrombosis: a study of genetic determinants. Thromb Haemost. 2000;83(4):554–8.

    Article  CAS  Google Scholar 

  25. D’Angelo A, Coppola A, Madonna P, et al. The role of vitamin B12 in fasting hyperhomocysteinemia and its interaction with the homozygous C677T mutation of the methylenetetrahydrofolatereductase (MTHFR) gene. A case-control study of patients with early-onset thrombotic events. Thromb Haemost. 2000;83:563.

    Article  Google Scholar 

  26. Klerk M, Verhoef P, Clarke R, et al. MTHFR 677C-->T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA. 2002;288:2023.

    Article  CAS  Google Scholar 

  27. Kohara K, Fujisawa M, Ando F, et al. MTHFR gene polymorphism as a risk factor for silent brain infarcts and white matter lesions in the Japanese general population: the NILS-LSA Study. Stroke. 2003;34:1130.

    Article  Google Scholar 

  28. Nappo F, De Rosa N, Marfella R, et al. Impairment of endothelial functions by acute hyperhomocysteinemia and reversal by antioxidant vitamins. JAMA. 1999;281:2113.

    Article  CAS  Google Scholar 

  29. Kang SS, Wong PW, Malinow MR. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr. 1992;12:279.

    Article  CAS  Google Scholar 

  30. Gallagher PM, Meleady R, Shields DC, et al. Homocysteine and risk of premature coronary heart disease. Evidence for a common gene mutation. Circulation. 1996;94:2154.

    Article  CAS  Google Scholar 

  31. Reitsma PH. Protein C deficiency: from gene defects to disease. Thromb Haemost. 1997;78:344.

    Article  CAS  Google Scholar 

  32. Mateo J, Oliver A, Borrell M, et al. Laboratory evaluation and clinical characteristics of 2,132 consecutive unselected patients with venous thromboembolism—results of the Spanish Multicentric Study on Thrombophilia (EMET-Study). Thromb Haemost. 1997;77:444.

    Article  CAS  Google Scholar 

  33. Sallah S, Abdallah JM, Gagnon GA. Recurrent warfarin-induced skin necrosis in kindreds with protein S deficiency. Haemostasis. 1998;28:25.

    CAS  PubMed  Google Scholar 

  34. Koenen RR, Tans G, van Oerle R, et al. The APC-independent anticoagulant activity of protein S in plasma is decreased by elevated prothrombin levels due to the prothrombin G20210A mutation. Blood. 2003;102:1686.

    Article  CAS  Google Scholar 

  35. Takeyama M, Nogami K, Saenko EL, et al. Protein S down-regulates factor Xase activity independent of activated protein C: specific binding of factor VIII(a) to protein S inhibits interactions with factor IXa. Br J Haematol. 2008;143:409.

    Article  CAS  Google Scholar 

  36. Dahlbäck B. C4b-binding protein: a forgotten factor in thrombosis and hemostasis. Semin Thromb Hemost. 2011;37:355.

    Article  Google Scholar 

  37. Gandrille S, Borgel D, Sala N, et al. Protein S deficiency: a database of mutations—summary of the first update. Thromb Haemost. 2000;84:918.

    Article  CAS  Google Scholar 

  38. Comp PC, Doray D, Patton D, Esmon CT. An abnormal plasma distribution of protein S occurs in functional protein S deficiency. Blood. 1986;67:504.

    CAS  PubMed  Google Scholar 

  39. Rosendaal FR, Doggen CJ, Zivelin A, et al. Geographic distribution of the 20210 G to A prothrombin variant. Thromb Haemost. 1998;79:706.

    Article  CAS  Google Scholar 

  40. Mannucci PM, Franchini M. Classic thrombophilic gene variants. Thromb Haemost. 2015;114:885–9.

    Article  Google Scholar 

  41. Cooper PC, Rezende SM. An overview of methods for detection of factor V Leiden and the prothrombin G20210A mutations. Int J Lab Hematol. 2007;29:153.

    Article  CAS  Google Scholar 

  42. Gomez E, van der Poel SC, Jansen JH, et al. Rapid simultaneous screening of factor V Leiden and G20210A prothrombin variant by multiplex polymerase chain reaction on whole blood. Blood. 1998;91:2208.

    CAS  PubMed  Google Scholar 

  43. Kearon C. Natural history of venous thromboembolism. Circulation. 2003;107(23 Suppl 1):I22–30.

    PubMed  Google Scholar 

  44. Kearon C, Akl EA, Comerota AJ, Prandoni P, Bounameaux H, Goldhaber SZ, et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2012;141(2 Suppl):e419S–94S.

    Article  CAS  Google Scholar 

  45. Kitchens CS. How I treat superficial venous thrombosis. Blood. 2011;117(1):39–44.

    Article  CAS  Google Scholar 

  46. Leon L, Giannoukas AD, Dodd D, Chan P, Labropoulos N. Clinical significance of superficial vein thrombosis. Eur J Vasc Endovasc Surg. 2005;29(1):10–7.

    Article  CAS  Google Scholar 

  47. Baglin T, Keeling D. Chapter 47, Management of venous thromboembolism. In: Postgraduate haematology. 7th ed. West Sussex: Wiley Blackwell; 2016. p. 830–7.

    Google Scholar 

  48. Streiff MB, Agnelli G, Connors JM, Crowther M, Eichinger S, Lopes R, et al. Guidance for the treatment of deep vein thrombosis and pulmonary embolism. J Thromb Thrombolysis. 2016;41:32–67.

    Article  CAS  Google Scholar 

  49. Iorio A, Kearon C, Filippucci E, Marcucci M, Macura A, Pengo V, et al. Risk of recurrence after a first episode of symptomatic venous thromboembolismprovoked by a transient risk factor: a systematic review. Arch Intern Med. 2010;170(19):1710–6.

    Article  Google Scholar 

  50. Boutitie F, Pinede L, Schulman S, Agnelli G, Raskob G, Julian J, et al. Influence of preceding length of anticoagulant treatment and initial presentation of venous thromboembolism on risk of recurrence after stopping treatment: analysis of individual participants’ data from seven trials. BMJ. 2011;343:d3036.

    Article  Google Scholar 

  51. Tosetto A, Iorio A, Marcucci M, Baglin T, Cushman M, Eichinger S, et al. Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: a proposed prediction score (DASH). J Thromb Haemost. 2012;10(6):1019–25.

    Article  CAS  Google Scholar 

  52. Eichenger S, Heinze G, Jandeck LM, Kyrle PA. Risk assessment of recurrence in patients with unprovoked deep vein thrombosisor pulmonary embolism: the Vienna prediction model. Circulation. 2010;121(14):1630–6.

    Article  Google Scholar 

  53. Kearon C, Akl EA. Duration of anticoagulant therapy for deep vein thrombosis and pulmonary embolism. Blood. 2014;123(12):1794–801.

    Article  CAS  Google Scholar 

  54. Milling TJ Jr, Frontera J. Exploring indications for the use of direct oral anticoagulants and the associated risks of major bleeding. Am J Manag Care. 2017;23(4 Suppl):S67–80.

    PubMed  PubMed Central  Google Scholar 

  55. Hicks LK, Bering H, Carson KR, Kleinerman J, Kukreti V, Ma A, et al. The ASH Choosing Wisely campaign: five hematologic tests and treatments to question. Blood. 2013;122:3879–83.

    Article  CAS  Google Scholar 

  56. National Clinical Guideline centre (UK). Venous thromboembolic diseases: the management of venous thromboembolic diseases and the role of thrombophilia testing [Internet]. London: Royal College of Physicians (UK); 2012.

    Google Scholar 

  57. Stevens SM, Woller SC, Bauer KA, Kasthuri R, Cushman M, Streiff M, et al. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J Thromb Thrombolysis. 2016;41(1):154–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyagi, S., Bose, D., Dange, P. (2019). Thrombophilia: Hereditary and Acquired. In: Saxena, R., Pati, H. (eds) Hematopathology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7713-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7713-6_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7712-9

  • Online ISBN: 978-981-13-7713-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics